999 resultados para Cibicides lobatulus, d13C


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxygen-18 records of benthic foraminifera from the Atlantic Ocean are significantly different from those of the Pacific and Indian Oceans indicating that the Glacial North Atlantic Deep Water was about 1.3°C cooler than today because different deep water sources appeared in the North Atlantic Ocean during glacial times. The present study seeks to interprete carbon-13 records of planktonic and benthic foraminifera as a tracer of the cycle of the CO2 dissolved in surface and deep water of the ocean during the last climatic cycle. Carbon-13 records of planktonic foraminifera indicate that the delta13C of atmospheric CO2 and total CO2 dissolved in surface water did not vary noticeably (-0.2 +/- 0.3 per mil) during glacial times. Carbon-13 records of benthic foraminifera indicate that the eastern North Atlantic Ocean was an area of deep water formation dying isotopic stage 2, but not during most of stage 3. Moreover, large delta13C differences in the NADW between 20°N and 50°N show that the residence time of the glacial NADW was about 4 times that of today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Correlation of paleoceanographic events in several key regions of the World Ocean: North Atlantic, Antarctic, West Arctic Seas, North Pacific and tropical Indo-Pacific has been carried out for the last 135 ka based on micropaleontological, stable isotope, geochronological (AMS-14C) and other data. It has been shown that the global thermohaline circulation controls remote climatic teleconnections on millennial-scale and partly on centennial-scale, while short-term climate changes are mainly transferred by the atmosphere. The basic information is given about the recent thermohaline circulation and stages of its development during Neogene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Few astronomically calibrated high-resolution (<=5 kyr) climate records exist that span the Oligocene-Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ~13-Myr interval of the Oligo-Miocene (30.1-17.1 Ma) at high resolution (~3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ~3.4 m and ~0.9 m, which correspond to 405- and ~110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, d18O and d13C are interpreted to coincide with ~110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (~2.4-Myr) are marked by recurrent episodes of high-amplitude ~110-kyr d18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic d18O and especially d13C signals, are more pronounced during ~2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ~110-kyr d18O cycles and the ~1.2-Myr amplitude modulation of obliquity is not consistent through the Oligo-Miocene. Identification of these recurrent episodes at Walvis Ridge, and their pacing by the ~2.4-Myr eccentricity cycle, revises the current understanding of the main climate events of the Oligo-Miocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxygen isotopes ratios of benthic foraminifera and detailed radiocarbon ages of the organic matter of an over 15 m long sediment core from the outer Niger delta allow us to date the oxygen isotope stage boundaries 1/2 to 11500 (+/- 650) years BP, 2/3 to approximately 23000 (+/- 2000) years BP. The composition of the predominantly terrigenous clays and accessory pelagic fossils reflects the evolution of the climate over the southwestern Sahel zone and the response of the Eastern Tropical Atlantic to these climatic fluctuations during the Late Quaternary. The dilution of the pelagic fossil concentrations by the terrigenous material and the oxygen isotopes ratios of planktonic foraminifera indicate large fluctuations in the freshwater discharge from the Niger, with high precipitations over the drainage area of this river from 4500 (+/- 300) to 11500 (+/- 650) years BP and from 11800 (+(- 600) to 13000 (+/- 600) years BP while the time intervals in between were as dry as today. Relative increase of kaolinite during wet phases and the association of smectite, chlorite and attapulgite during dry ones characterize the response of the weathering in the Niger drainage basins to the climatic fluctuations. The occurrence of 10-14 A mixed-layers prior to 26000 years BP is correlated with moderate alteration of the crystalline substratum outcrops from the middle-lower part of the Niger Basin. High quartz concentrations are particularly typical for the transition between oxygen isotope stages 1 and 2 at the inception of heavy precipitations in the southern Sahel zone. Sedimentation rates were quite constant, 30-35 cm/1000 years; they became unusually large at the beginning of the Holocene from 10900 (+/- 650) to 11500 (+/- 650) years BP where they reached more than 600 cm/1000 years. Bottom waters around 1100 m depth in the Gulf of Guinea responded to changes in paleo-oceanography of the entire Atlantic Ocean as well as to local influences. Abnormal carbon isotopes ratios and the drastic changes from a highly diversified fauna (during stages 2 and 3. and during the last part of stage 1 after approx. 7000 years BP) to a poorly diversified fauna in the intervenin time span point to the development of a local benthic environment which cannot easily be compared with the corresponding continental and slope environments of the entire Atlantic Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Subtropical Gyres are an important constituent of the ocean-atmosphere system due to their capacity to store vast amounts of warm and saline waters. Here we decipher the sensitivity of the (sub)surface North Atlantic Subtropical Gyre with respect to orbital and millennial scale climate variability between ~140 and 70 ka, Marine Isotope Stage (MIS) 5. Using (isotope)geochemical proxy data from surface and thermocline dwelling foraminifers from Blake Ridge off the west coast of North America (ODP Site 1058) we show that the oceanographic development at subsurface (thermocline) level is substantially different from the surface ocean. Most notably, surface temperatures and salinities peak during the penultimate deglaciation (Termination II) and early MIS 5e, implying that subtropical surface ocean heat and salt accumulation might have resulted from a sluggish northward heat transport. In contrast, maximum thermocline temperatures are reached during late MIS 5e when surface temperatures are already declining. We argue that the subsurface warming originated from intensified Ekman downwelling in the Subtropical Gyre due to enhanced wind stress. During MIS 5a-d a tight interplay of the subtropical upper ocean hydrography to high latitude millennial-scale cold events can be observed. At Blake Ridge, the most pronounced of these high latitude cold events are related to surface warming and salt accumulation in the (sub)surface. Similar to Termination II, heat accumulated in the Subtropical Gyre probably due to a reduced Atlantic Meridional Overturning Circulation. Additionally, a southward shift and intensification of the subtropical wind belts lead to a decrease of on-site precipitation and enhanced evaporation, coupled to intensified gyre circulation. Subsequently, the northward advection of these warm and saline water likely contributed to the fast resumption of the overturning circulation at the end of these high latitude cold events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Great Belt, the largest inlet to the Baltic Sea, has a deep and well defined channel system. A distinct thermohaline layer at roughly 18 to 20 m of water depth separates the saltier and generally cooler deeper North Sea water from the brackish and warmer surface water. It is practically a current dominated area, with the strongest bottom currents due to prolonged west winds. The size and shape of the surface sediments and their grain size distributions show a close relationship with the prevailing hydrographical conditions. Southerly current marks predominate while northerly directions are confined to 10 to 14 m of water depth. The degree of bioturbation is highest in the uppermost sedimentary cover where practically all original stratification has been destroyed. Various bioturbate structures have been identified with the fauna. Coiling ratios of Ammonia beccarii (Linnaeus) have been successfully applied for correlation in the postglacial sediments of the early Littorina Transgression. The succession shows that in the Boreal brackish water conditions were probably followed by peat and limnic sediments as the sea regressed. With the Littorina Transgression, the sea again entered the area and high sedimentation rates resulted in the major deposits of the Great Belt. At least for the last 4000 years, sedimentation rates had been very low. Present day currents sweep out the sediments, mainly to the southern marginal areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxygen and carbon isotope analyses were performed on monospecific or mixed-species samples of benthic foraminifers, as well as on the planktonic species Globigerinoides ruber from a 24-m hydraulic piston core raised on the western flank of the Rio Grande Rise, at DSDP Site 517 (30°56.81'S and 38°02.47'W, water depth 2963 m) in the southwestern Atlantic. This site is presently located in the core of North Atlantic Deep Water (NADW). This is the first long isotopic record of Quaternary benthic foraminifers; it displays at least 30 isotopic stages, 25 of them readily correlated with the standard sequence of Pacific Core V28-239. The depths of both the Bruhnes/Matuyama boundary and the Jaramillo Event based on oxygen isotope stratigraphy agree well with paleomagnetic results. Quaternary faunal data from this part of the Atlantic are dated through isotopic stratigraphy and partially contradict data previously published by Williams and Ledbetter (1979). There was a substantial increase in the size of the earth's major ice sheets culminating at Stage 22 and corresponding to a l per mil progressive increase of d18O maximal values. Further, ice volume-induced isotopic changes were not identical for different glacial cycles. Oxygen and carbon isotope analyses of benthic foraminifers show that during Pleistocene glacial episodes, NADW was cooler than today and that Mediterranean outflow might still have contributed to the NADW sources. The comparison of coiling ratio changes of Globorotalia truncatulinoides with planktonic and benthic oxygen isotope records shows that there might have been southward excursions of the Brazil Current during the Pleistocene, perhaps related to Antarctic surface water surges. The question of the location of NADW sources during glacial maxima remains open.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed analysis of over 200 samples of uppermost Cretaceous and Paleocene sediments from Atlantic Ocean DSDP Sites 384, 86, 95, 152, 144, 20C, 21, 356, 357, and 329 provides new information on the temperature stratification of Paleocene planktonic foraminifera, the temperature and carbon isotopic changes across the Cretaceous/Tertiary boundary, and the fluctuating temperature and carbon isotopic records through the Paleocene ~64.5-54 m.y.). There was a significant temperature rise across the Cretaceous/Tertiary boundary both at the surface and in deep waters of the Atlantic Ocean. This temperature rise occurred before the basal Tertiary 'Globigerina' eugubina Zone, so that in the oldest Paleocene sample yet analyzed from the deep sea (Site 356) temperatures are already three degrees higher at the bottom and at the surface than in the Cretaceous. The temperature rise across the boundaryis more pronounced on the bottom and in samples from higher latitudes. Accompanying the temperature rise across the boundary there is a significant shift in the carbon isotope profile. In the basal Paleocene the foraminifera of the surface zone demonstrate very negative carbon isotope values (unlike in the Cretaceous of today's ocean), while deeper dwelling species have more positive values which then decrease to the bottom. The unusual carbon isotope gradients persist through the first three million years of the Paleocene until towards the top of planktonic foraminiferal Zone P.1 (G. trinidadensis Zone) the foraminifera record a profile more positive at the surface and decreasing towards the bottom (as in today's ocean). During the Paleocene there are two noteworthy rises in surface water temperature; the first around 62-61 m.y. (G. trinidadensis Zone), and the second near the base of the Globorotalia angulata Zone, 60-59 m.y. At this time surface temperatures at low to mid latitudes reached values near 25°C, while at mid-latitude Site 384 temperature highs near 22°C were registered. At a sample spacing of around one per million years, we have only produced some of the detail of these temperature fluctuations. The later Paleocene is generally cooler and there do not seem to be any large variations either through time or latitude. Middle-latitude sites average temperatures near 15°C at the surface, while high lower latitude site temperatures range near 18°C. The most salient feature of the bottom temperature record (based on multispecific samples) through the Paleocene is its lack of fluctuations. There is an overall temperature range of 5°C at these intermediate depth sites (paleodepth estimates between 1500 and 3000 m). Higher values near 13°C accompany the surface temperature peaks around 62 and 60 m.y., while low values near 8°C occur in Zone P.2 (61-60 m.y.). We detected no change in bottom temperature across the paleocene/Eocene boundary in the few samples studied so far. While there are several fluctuations in the carbon isotope values through the early Paleocene, the general trend is one of increasingly positive values at the surface and at depth. This trend culminates in the late Paleocene (upper Zone P.4, about 56-57 m.y.) with a major excursion in the carbon isotope values. At low latitudes the range between the surface and the deepest planktonic foraminifera is a delta13C of 4 per mil as compared with a range of 2 per mil today. The carbon values drop off slightly, but remain strongly positive through the remainder of the Paleocene at most sites. Accompanying the carbon isotope excursion at Site 384 is a productivity increase and a proposed rise in the CCD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on detailed reconstructions of global distribution patterns, both paleoproductivity and the benthic d13C record of CO2, which is dissolved in the deep ocean, strongly differed between the Last Glacial Maximum and the Holocene. With the onset of Termination I about 15,000 years ago, the new (export) production of low- and mid-latitude upwelling cells started to decline by more than 2-4 Gt carbon/year. This reduction is regarded as a main factor leading to both the simultaneous rise in atmospheric CO2 as recorded in ice cores and, with a slight delay of more than 1000 years, to a large-scale gradual CO2 depletion of the deep ocean by about 650 Gt C. This estimate is based on an average increase in benthic d13C by 0.4-0.5 per mil. The decrease in new production also matches a clear 13C depletion of organic matter, possibly recording an end of extreme nutrient utilization in upwelling cells. As shown by Sarnthein et al., [1987], the productivity reversal appears to be triggered by a rapid reduction in the strength of meridional trades, which in turn was linked via a shrinking extent of sea ice to a massive increase in high-latitude insolation, i.e., to orbital forcing as primary cause.