959 resultados para Chronic Musculoskeletal Pain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Low vitamin D is implicated in various chronic pain conditions with, however, inconclusive findings. Vitamin D might play an important role in mechanisms being involved in central processing of evoked pain stimuli but less so for spontaneous clinical pain. OBJECTIVE This study aims to examine the relation between low serum levels of 25-hydroxyvitamin D3 (25-OH D) and mechanical pain sensitivity. DESIGN We studied 174 patients (mean age 48 years, 53% women) with chronic pain. A standardized pain provocation test was applied, and pain intensity was rated on a numerical analogue scale (0-10). The widespread pain index and symptom severity score (including fatigue, waking unrefreshed, and cognitive symptoms) following the 2010 American College of Rheumatology preliminary diagnostic criteria for fibromyalgia were also assessed. Serum 25-OH D levels were measured with a chemiluminescent immunoassay. RESULTS Vitamin deficiency (25-OH D < 50 nmol/L) was present in 71% of chronic pain patients; another 21% had insufficient vitamin D (25-OH D < 75 nmol/L). After adjustment for demographic and clinical variables, there was a mean ± standard error of the mean increase in pain intensity of 0.61 ± 0.25 for each 25 nmol/L decrease in 25-OH D (P = 0.011). Lower 25-OH D levels were also related to greater symptom severity (r = -0.21, P = 0.008) but not to the widespread pain index (P = 0.83) and fibromyalgia (P = 0.51). CONCLUSIONS The findings suggest a role of low vitamin D levels for heightened central sensitivity, particularly augmented pain processing upon mechanical stimulation in chronic pain patients. Vitamin D seems comparably less important for self-reports of spontaneous chronic pain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Can the application of local anesthetics (Neural Therapy, NT) alone durably improve pain symptoms in referred patients with chronic and refractory pain? If the application of local anesthetics does lead to an improvement that far exceeds the duration of action of local anesthetics, we will postulate that a vicious circle of pain in the reflex arcs has been disrupted (hypothesis). METHODS: Case series design. We exclusively used procaine or lidocaine. The inclusion criteria were severe pain and chronic duration of more than three months, pain unresponsive to conventional medical measures, written referral from physicians or doctors of chiropractic explicitly to NT. Patients with improvement of pain who started on additional therapy during the study period for a reason other than pain were excluded in order to avoid a potential bias. Treatment success was measured after one year follow-up using the outcome measures of pain and analgesics intake. RESULTS: 280 chronic pain patients were included; the most common reason for referral was back pain. The average number of consultations per patient was 9.2 in the first year (median 8.0). After one year, in 60 patients pain was unchanged, 52 patients reported a slight improvement, 126 were considerably better, and 41 pain-free. At the same time, 74.1 % of the patients who took analgesics before starting NT needed less or no more analgesics at all. No adverse effects or complications were observed. CONCLUSIONS: The good long-term results of the targeted therapeutic local anesthesia (NT) in the most problematic group of chronic pain patients (unresponsive to all evidence based conventional treatment options) indicate that a vicious circle has been broken. The specific contribution of the intervention to these results cannot be determined. The low costs of local anesthetics, the small number of consultations needed, the reduced intake of analgesics, and the lack of adverse effects also suggest the practicality and cost-effectiveness of this kind of treatment. Controlled trials to evaluate the true effect of NT are needed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Inability to predict the therapeutic effect of a drug in individual pain patients prolongs the process of drug and dose finding until satisfactory pharmacotherapy can be achieved. Many chronic pain conditions are associated with hypersensitivity of the nervous system or impaired endogenous pain modulation. Pharmacotherapy often aims at influencing these disturbed nociceptive processes. Its effect might therefore depend on the extent to which they are altered. Quantitative sensory testing (QST) can evaluate various aspects of pain processing and might therefore be able to predict the analgesic efficacy of a given drug. In the present study three drugs commonly used in the pharmacological management of chronic low back pain are investigated. The primary objective is to examine the ability of QST to predict pain reduction. As a secondary objective, the analgesic effects of these drugs and their effect on QST are evaluated. METHODS/DESIGN In this randomized, double blinded, placebo controlled cross-over study, patients with chronic low back pain are randomly assigned to imipramine, oxycodone or clobazam versus active placebo. QST is assessed at baseline, 1 and 2 h after drug administration. Pain intensity, side effects and patients' global impression of change are assessed in intervals of 30 min up to two hours after drug intake. Baseline QST is used as explanatory variable to predict drug effect. The change in QST over time is analyzed to describe the pharmacodynamic effects of each drug on experimental pain modalities. Genetic polymorphisms are analyzed as co-variables. DISCUSSION Pharmacotherapy is a mainstay in chronic pain treatment. Antidepressants, anticonvulsants and opioids are frequently prescribed in a "trial and error" fashion, without knowledge however, which drug suits best which patient. The present study addresses the important need to translate recent advances in pain research to clinical practice. Assessing the predictive value of central hypersensitivity and endogenous pain modulation could allow for the implementation of a mechanism-based treatment strategy in individual patients. TRIAL REGISTRATION Clinicaltrials.gov, NCT01179828.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES Widespread sensory deficits occur in 20-40% of chronic pain patients on the side of pain, independent of pain aetiology, and are known as nondermatomal sensory deficits (NDSDs). NDSDs can occur in absence of central or peripheral nervous system lesions. We hypothesised that NDSDs were associated with cerebral grey matter changes in the sensory system and in pain processing regions, detectable with voxel-based morphometry. METHODS Twenty-five patients with NDSDs, 23 patients without NDSDs ("pain-only"), and 29 healthy controls were studied with high resolution structural MRI of the brain. A comprehensive clinical and psychiatric evaluation based on Diagnostic and Statistical Manual was performed in all patients. RESULTS Patients with NDSDs and "pain-only" did not differ concerning demographic data and psychiatric diagnoses, although anxiety scores (HADS-A) were higher in patients with NDSDs. In patients with NDSDs, grey matter increases were found in the right primary sensory cortex, thalamus, and bilaterally in lateral temporal regions and the hippocampus/fusiform gyrus. "Pain-only" patients showed a bilateral grey matter increase in the posterior insula and less pronounced changes in sensorimotor cortex. CONCLUSIONS Dysfunctional sensory processing in patients with NDSDs is associated with complex changes in grey matter volume, involving the somatosensory system and temporal regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hypersensitivity of pain pathways is considered a relevant determinant of symptoms in chronic pain patients, but data on its prevalence are very limited. To our knowledge, no data on the prevalence of spinal nociceptive hypersensitivity are available. We studied the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity in 961 consecutive patients with various chronic pain conditions. Pain threshold and nociceptive withdrawal reflex threshold to electrical stimulation were used to assess pain hypersensitivity and spinal nociceptive hypersensitivity, respectively. Using 10th percentile cutoff of previously determined reference values, the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity (95% confidence interval) was 71.2 (68.3-74.0) and 80.0 (77.0-82.6), respectively. As a secondary aim, we analyzed demographic, psychosocial, and clinical characteristics as factors potentially associated with pain hypersensitivity and spinal nociceptive hypersensitivity using logistic regression models. Both hypersensitivity parameters were unaffected by most factors analyzed. Depression, catastrophizing, pain-related sleep interference, and average pain intensity were significantly associated with hypersensitivity. However, none of them was significant for both unadjusted and adjusted analyses. Furthermore, the odds ratios were very low, indicating modest quantitative impact. To our knowledge, this is the largest prevalence study on central hypersensitivity and the first one on the prevalence of spinal nociceptive hypersensitivity in chronic pain patients. The results revealed an impressively high prevalence, supporting a high clinical relevance of this phenomenon. Electrical pain thresholds and nociceptive withdrawal reflex explore aspects of pain processing that are mostly independent of sociodemographic, psychological, and clinical pain-related characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alterations in sodium channel expression and function have been suggested as a key molecular event underlying the abnormal processing of pain after peripheral nerve or tissue injury. Although the relative contribution of individual sodium channel subtypes to this process is unclear, the biophysical properties of the tetrodotoxin-resistant current, mediated, at least in part, by the sodium channel PN3 (SNS), suggests that it may play a specialized, pathophysiological role in the sustained, repetitive firing of the peripheral neuron after injury. Moreover, this hypothesis is supported by evidence demonstrating that selective “knock-down” of PN3 protein in the dorsal root ganglion with specific antisense oligodeoxynucleotides prevents hyperalgesia and allodynia caused by either chronic nerve or tissue injury. In contrast, knock-down of NaN/SNS2 protein, a sodium channel that may be a second possible candidate for the tetrodotoxin-resistant current, appears to have no effect on nerve injury-induced behavioral responses. These data suggest that relief from chronic inflammatory or neuropathic pain might be achieved by selective blockade or inhibition of PN3 expression. In light of the restricted distribution of PN3 to sensory neurons, such an approach might offer effective pain relief without a significant side-effect liability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.