903 resultados para Chief Pipi-qua (Fred Ettawageshik) Native Americans
Resumo:
Intraguild predation (IGP) between invasive and native species can lead to species exclusions or co-existence, dependent on the direction and strength of the interaction. Recently, derivation of 'functional responses' has been identified as a means of comparing the community impacts of invasive and native species. Here, we employ a novel use of this functional response methodology to evaluate any IGP asymmetries between the invasive Ponto-Caspian amphipod Echinogammarus ischnus and the North American native Gammarus fasciatus. The direction and magnitude of intraguild predation of adult males on hetero-specific adult females has previously been shown to reverse across a water conductivity gradient. This partially explains field patterns, but does not predict the co-existence of the two species observed in many habitats and locations. Here, we compared intraguild predation by both species on each other's juveniles in high- and low- conductivity water. G. fasciatus has a higher type II functional response towards E. ischnus juveniles compared to the reciprocal interaction. Conductivity did not influence the predation rate on juveniles of either E. ischnus or G. fasciatus. Thus, the male/female IGP advantage to the native G. fasciatus in low conductivity water is compounded by a juvenile IGP asymmetry, which also counteracts the male/female IGP advantage to E. ischnus in high conductivity waters, helping to explain field patterns of exclusion and co-existence. Thus, complex asymmetries in mutual IGP associated with inherent species differences, environmental modulation, and life-history effects can help us understand and predict the population and community level outcomes of species invasions.
Resumo:
Introduction of the invasive Asian cyprinid fish Pseudorasbora parva into a 0.3 ha pond in England with a fish assemblage that included Cyprinus carpio, Rutilus rutilus and Scardinius erythrophthalmus resulted in their establishment of a numerically dominant population in only 2 years; density estimates exceeded 60 ind. m(-2) and they comprised > 99% of fish present. Stable isotope analysis (SIA) revealed significant trophic overlap between P. parva, R. rutilus and C. carpio, a shift associated with significantly depressed somatic growth in R. rutilus. Despite these changes, fish community composition remained similar between the ponds. Comparison with SIA values collected from an adjacent pond free of P. parva revealed a simplified food web in P. parva presence, but with an apparent trophic position shift for several fishes, including S. erythrophthalmus which appeared to assimilate energy at a higher trophic level, probably through P. parva consumption. The marked isotopic shifts shown in all taxa in the P. parva invaded pond (C-13-enriched, N-15 depleted) were indicative of a shift to a cyanobacteria-dominated phytoplankton community. These findings provide an increased understanding of the ecological consequences of the ongoing P. parva invasion of European freshwater ecosystems.
Resumo:
The Pacific oyster (Crassostrea gigas) was introduced into Strangford Lough, Northern Ireland in the 1970s. It was assumed that local environmental conditions would not facilitate successful reproduction. However, in the 1990s there were reports of C. gigas outside licensed aquaculture sites and this investigation set out to ascertain the current distribution, years of likely recruitment and population structure of the species. C. gigas were found distributed widely throughout the northern basin during surveys; the frequency distribution suggesting C. gigas is not recruiting every year. Establishment of feral populations of C. gigas elsewhere have linked to habitat change. A pilot cull was initiated to assess the success rate of early intervention. This paper demonstrates the potential benefits of responding rapidly to initial reports of non-native species in a way that may curtail establishment and expansion. The method advocated in simple and can be recommended to the appropriate regulatory authorities.
Resumo:
In Strangford Lough, Northern Ireland stocks of Ostrea edulis collapsed in the 1890s and the species was rarely recorded again until 1998 when the wild stock was estimated to be 100,000. The stock increased to 1.2 million in 2003 but declined to 650,000 by 2005. In 2007 the stock exceeded 1 million. The initial recovery of wild stocks is attributed to the combined effects of spawning commercial O. edulis stocks of and larval retention due to local hydrography. The stock decline between 2003 and 2005 is attributed to unregulated harvesting. Significant differences in abundances between sites over this period may be explained by the exploitation of more-readily accessible sites initially and of less accessible sites later. Oysters at sites where there was minimal exploitation probably contributed to widespread recruitment in 2007. Sustainable management of recovering native oyster stocks in Strangford Lough and elsewhere and will be impossible without appropriate legislation and enforcement.
Past, Present, and Future: Exploring and Restoring Native Perspectives on Roanoke and the Chesapeake