921 resultados para Cellulose nanowhiskers
Resumo:
O presente trabalho tem como objetivo a otimização da etapa de fermentação dos açúcares obtidos a partir da drêche cervejeira para produção do bioetanol através da utilização das leveduras Pichia stipitis NCYC 1541 e Kluyveromyces marxianus NCYC 2791 como agentes fermentativos. O meio de cultura usado para manter as culturas destas leveduras foi Yeast Extract Peptone Dextrose (YEPD). O principal propósito deste trabalho foi o de encontrar alternativas aos combustíveis fósseis, pautando-se por soluções inofensivas para o meio ambiente e sustentáveis. Assim, o trabalho está dividido em quatro etapas: 1) caraterização química e biológica da drêche; 2) pré-tratamento ácido e hidrólise enzimática para primeiramente quebrar as moléculas de lenhina que envolvem os polímeros de celulose e hemicelulose e em seguida romper as ligações poliméricas destas macromoléculas por ação enzimática e transforma-las em açúcares simples, respetivamente, obtendo-se então a glucose, a maltose, a xilose e a arabinose; e, por último, 3) otimização da etapa de fermentação da glucose, maltose e das pentoses que constitui a condição essencial para se chegar à síntese do bioetanol de um modo eficiente e sustentável e 4) a recuperação do bioetanol produzido por destilação fracionada. A quantificação dos açúcares libertados no processo foi feita recorrendo a análises por cromatografia líquida de alta eficiência (HPLC). Neste estudo foram identificados e quantificados cinco açúcares: Arabinose, Glucose, Maltose, Ribose e Xilose. Na etapa de pré-tratamento e hidrólise enzimática foram usados os ácidos clorídrico (HCl) e nítrico (HNO3) com a concentração de 1% (m/m), e as enzimas Glucanex 100g e Ultraflo L. Foram testadas seis condições de pré-tratamento e hidrólise enzimática, alterando os parâmetros tempo de contacto e razão enzimas/massa de drêche, respetivamente, e mantendo a temperatura (50 ºC), velocidade de agitação (75 rpm) e concentração dos ácidos (1% (m/m)). No processamento de 25 g de drêche seca com 0,5 g de Glucanex, 0,5 mL de Ultraflo e um tempo de reação de 60 minutos para as enzimas foi obtida uma eficiência de 15%, em hidrolisado com 6% da celulose. Realizou-se a fermentação do hidrolisado resultante do pré-tratamento ácido e hidrólise enzimática de drêche cervejeira e de meios sintéticos preparados com os açúcares puros, usando as duas estirpes selecionadas para este estudo: Pichia stipitis NCYC 1541 e Kluyveromyces marxianus NYCY 2791. As eficiências de fermentação dos açúcares nos meios sintéticos foram superiores a 80% para ambas as leveduras. No entanto, as eficiências de fermentação do hidrolisado da drêche foram de 45,10% pela Pichia stipitis e de 36,58 para Kluyveromyces marxianus, para um tempo de fermentação de 72 horas e à temperatura de 30 °C. O rendimento teórico em álcool no hidrolisado da drêche é de 0,27 g/g, três vezes maior do que o real (0,0856 g/g), para Pichia stipitis e de 0,19 g/g seis vezes maior do que o real (0,0308 g/g), para a Kluyveromyces marxianus.
Resumo:
SUMMARY The aim of this work was to compare, from a parasitological ( Cryptosporidiumspp. and Giardia duodenalis), bacteriological (total and thermotolerants coliforms) and physicochemical perspective, water sources used for drinking and irrigation of vegetables intended to be sold for human consumption. From January 2010 to May 2011, samples of different water sources from vegetable producing properties were collected; 100 liters for parasitological analysis, 200 mL for bacteriological analysis, and five liters for physicochemical analysis. Water samples were filtered under vacuum with a kit containing a cellulose acetate membrane filter, 1.2 µm (Millipore(r), Barueri, SP, Brazil). The material retained on the membrane was mechanically extracted and analyzed by direct immunofluorescence (Merifluor(r)kit). From 20 rural properties investigated, 10 had artesian wells (40 samples), 10 had common wells (40 samples), and one had a mine (four samples), the latter contaminated by Cryptosporidiumspp. In samples from artesian wells, 90 to 130 meters depth, 42.5% were positive for total coliforms and 5.0% were identified to have abnormal coloration. From the samples of common wells, 14 to 37 meters depth, 87.5% were contaminated with total coliforms, 82.5% were positive for thermotolerant coliforms, and 12.5% had color abnormalities. We did not detect the presence of Giardiaspp. or Cryptosporidiumspp. in artesian and common wells. The use of artesian or common wells is an important step in the control of the spreading of zoonoses, particularly Cryptosporidiumspp. and Giardiaspp., as well as artesian wells for coliform control in local production of vegetables to be marketed.
Resumo:
A maior compreensão da fisiopatologia das úlceras de perna tem permitido o desenvolvimento de novas modalidades terapêuticas. As matrizes constituídas por colagénio e celulose regenerada oxidada permitem, através da ligação a proteases, menor degradação da matriz, protecção e estabilização de factores de crescimento favorecendo a cicatrização da úlcera. Doente do sexo masculino, 72 anos de idade, com síndrome metabólica e insuficiência veno-arterial periférica, com úlceras, extensas, de longa evolução, refractárias aos inúmeros tratamentos efectuados, curadas com pensos com matriz de colagénio, celulose regenerada oxidada e prata.
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioquímica – Ramo Bioquímica Estrutural
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Biotecnologia
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
The present work is devoted to study the pre-treatment of lignocellulosic biomass, especially wheat straw, by the application of the acidic ionic liquid (IL) such as 1-butyl-3-methylimidazolium hydrogen sulphate. The ability of this IL to hydrolysis and conversion of biomass was scrutinised. The pre-treatment with hydrogen sulphate-based IL allowed to obtain a liquor rich in hemicellulosic sugars, furans and organic acids, and a solid fraction mainly constituted by cellulose and lignin. Quantitative and qualitative analyses of the produced liquors were made by capillary electrophoresis and high-performance liquid chromatography. Pre-treatment conditions were set to produce xylose or furfural. Specific range of temperatures from 70 to 175 °C and residence times from 20.0 to 163.3 min were studied by fixing parameters such as biomass/IL ratio (10 % (w/w)) and water content (1.25 % (w/w)) in the pre-treatment process. Statistical modelling was applied to maximise the xylose and furfural concentrations. For the purpose of reaction condition comparison the severity factor for studied ionic liquid was proposed and applied in this work. Optimum conditions for xylose production were identified to be at 125 °C and 82.1 min, at which 16.7 % (w/w) xylose yield was attained. Furfural was preferably formed at higher pre-treatment temperatures and longer reaction time (161 °C and 104.5 min) reaching 30.7 % (w/w) maximum yield. The influence of water content on the optimum xylose formation was also studied. Pre-treatments with 5 and 10 % (w/w) water content were performed and an increase of 100 % and 140 % of xylose yield was observed, respectively, while the conversion into furfural maintained unchanged.
Resumo:
Fundação para a Ciência e a Tecnologia (FCT-MCTES) under the grant SFRH/BD/69306/2010
Resumo:
Three different treatments were applied on several specimens of dolomitic and calcitic marble, properly stained with rust to mimic real situations (the stone specimens were exposed to the natural environment for about six months in contact with rusted iron). Thirty six marble specimens, eighteen calcitic and eighteen dolomitic, were characterized before and after treatment and monitored throughout the cleaning tests. The specimens were characterized by SEM-EDS (Scanning Electron Microscopy coupled with Energy Dispersion System), XRD (XRay Diffraction), XRF (X-Ray Fluorescence), FTIR (Fourier Transform Infrared Spectroscopy) and color measurements. It was also made a microscopic and macroscopic analysis of the stone surface along with the tests of short and long term capillary absorption. A series of test trials were conducted in order to understand which concentrations and contact times best suits to this purpose, to confirm what had been written to date in the literature. We sought to develop new methods of treatment application, skipping the usual methods of applying chemical treatments on stone substrates, with the use of cellulose poultice, resorting to the agar, a gel already used in many other areas, being something new in this area, which possesses great applicability in the field of conservation of stone materials. After the application of the best methodology for cleaning, specimens were characterized again in order to understand which treatment was more effective and less harmful, both for the operator and the stone material. Very briefly conclusions were that for a very intense and deep penetration into the stone, a solution of 3.5% of SDT buffered with ammonium carbonate to pH around 7 applied with agar support would be indicated. For rust stains in its initial state, the use of Ammonium citrate at a concentration of 5% buffered with ammonium to pH 7 could be applied more than once until satisfactory results appear.
Resumo:
This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.
Resumo:
This work will discuss the use of different paper membranes as both the substrate and dielectric for field-effect memory transistors. Three different nanofibrillated cellulose membranes (NFC) were used as the dielectric layer of the memory transistors (NFC), one with no additives, one with an added polymer PAE and one with added HCl. Gallium indium zinc oxide (GIZO) was used as the device’s semiconductor and gallium aluminium zinc oxide (GAZO) was used as the gate electrode. Fourier transform infrared spectroscopy (FTIR) was used to access the water content of the paper membranes before and after vacuum. It was found that the devices recovered their water too quickly for a difference to be noticeable in FTIR. The transistor’s electrical performance tests yielded a maximum ION/IOFF ratio of around 3,52x105 and a maximum subthreshold swing of 0,804 V/decade. The retention time of the dielectric charge that grants the transistor its memory capabilities was accessed by the measurement of the drain current periodically during 144 days. During this period the mean drain current did not lower, leaving the retention time of the device indeterminate. These results were compared with similar devices revealing these devices to be at the top tier of the state-of-the-art.
Resumo:
Abstract This study aimed to investigate the role of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), polysaccharides, and protein contents associated with the early events of postharvest physiological deterioration (PPD) in cassava roots. Increases in APX and GPX activity, as well as total protein contents occurred from 3 to 5 days of storage and were correlated with the delay of PPD. Cassava samples stained with periodic acid-Schiff (PAS) highlighted the presence of starch and cellulose. Degradation of starch granules during PPD was also detected. Slight metachromatic reaction with toluidine blue is indicative of increasing of acidic polysaccharides and may play an important role in PPD delay. Principal component analysis (PCA) classified samples according to their levels of enzymatic activity based on the decision tree model which showed GPX and total protein amounts to be correlated with PPD. The Oriental (ORI) cultivar was more susceptible to PPD.
Resumo:
CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.
Resumo:
CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.