898 resultados para Cell culture techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcium Phosphate ceramics have been widely used in tissue engineering due to their excellent biocompatibility and biodegradability. In the physiological environment, they are able to gradually degrade, absorbed and promote bone growth. Ultimately, they are capable of replacing damaged bone with new tissue. However, their low mechanical properties limit calcium phosphate ceramics in load-bearing applications. To obtain sufficient mechanical properties as well as high biocompatibility is one of the main focuses in biomaterials research. Therefore, the current project focuses on the preparation and characterization of porous tri-calcium phosphate (TCP) ceramic scaffolds. Hydroxapatite (HA) was used as the raw material, and normal calcium phosphate bioglass was added to adjust the ratio between calcium and phosphate. It was found that when 20% bioglass was added to HA and sintered at 1400oC for 3 hours, the TCP scaffold was obtained and this was confirmed by X-ray diffraction (XRD) analysis. Test results have shown that by applying this method, TCP scaffolds have significantly higher compressive strength (9.98MPa) than those made via TCP powder (<3MPa). Moreover, in order to further increase the compressive strength of TCP scaffolds, the samples were then coated with bioglass. For normal bioglass coated TCP scaffold, compressive strength was 16.69±0.5MPa; the compressive strength for single layer mesoporous bioglass coated scaffolds was 15.03±0.63MPa. In addition, this project has also concentrated on sizes and shapes effects; it was found that the cylinder scaffolds have more mechanical property than the club ones. In addition, this project performed cell culture within scaffold to assess biocompatibility. The cells were well distributed in the scaffold, and the cytotoxicity test was performed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The Alkaline Phosphatase (Alp) activity of human bone marrow mesenchymal stem cell system (hBMSCs) seeded on scaffold expressed higher in vitro than that in the positive control groups in osteogenic medium, which indicated that the scaffolds were both osteoconductive and osteoinductive, showing potential value in bone tissue engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two major difficulties facing widespread clinical implementation of existing Tissue Engineering (TE) strategies for the treatment of musculoskeletal disorders are (1) the cost, space and time required for ex vivo culture of a patient’s autologous cells prior to re-implantation as part of a TE construct, and (2) the potential risks and availability constraints associated with transplanting exogenous (foreign) cells. These hurdles have led to recent interest in endogenous TE strategies, in which the regenerative potential of a patient’s own cells is harnessed to promote tissue regrowth without ex vivo cell culture. This article provides a focused perspective on key issues in the development of endogenous TE strategies, progress to date, and suggested future research directions toward endogenous repair and regeneration of musculoskeletal tissues and organs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity. Methodology/Principal Findings In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (Ki = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion. Conclusion/Significance These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Myopia is a common eye disorder affecting up to 90% of children in South East Asia and 30% of the population worldwide. Myopia of high severity is a leading cause of blindness around the world (4th to 5th most common). Changes and remodelling of the sclera i.e. increase cellular proliferation & increase protein synthesis within scleral cells (↑ scleral DNA) and thinning and lose of extracellular matrix of sclera (↓ scleral GAG synthesis) have been linked to myopic eye growth in animal models. Signals acting on the sclera are thought to originate in the retina, and are modulated by the retinal pigment epithelium (RPE) with limited evidence suggesting that the RPE can modify scleral cell growth in culture. However, the mechanism of retinal signal transmission and the role of posterior eye cup tissue, including the RPE, in mediating changes in scleral fibroblast growth during myopia development are unclear. Retinal transmitter systems are critically involved in pathways regulating eye growth, which ultimately lead to alterations in the sclera if eye size is to change. A dopaminergic agonist and muscarinic antagonists decrease the proliferation of scleral chondrocytes when co-cultured with chick’s retinal pigment epithelium (RPE). GABA receptors have recently been localised to chick sclera. We therefore hypothesised that posterior eye cup tissue from myopic eyes would stimulate and from hyperopic eyes would inhibit growth of scleral fibroblasts in vitro and that GABAergic agents could directly interact with scleral cells or indirectly modify the effects of myopic and hyperopic posterior eye cup tissue on scleral fibroblast growth. Method: Fibroblastic cells obtained from 8-day-old chick sclera were used to establish cell banks. Two major experiments were performed. Experiment 1: To determine if posterior eye cup tissues from myopic eye stimulates and hyperopic eye inhibits scleral cell proliferation, when co-cultured with scleral cells in vitro. This study comprised two linked experiments, i) monocular visual treatments of FDM (form-deprivation myopia), LIM (lens-induced myopia) and LIH (lens-induced hyperopia) with assessment of the effect of full punch eye cup tissue on DNA and GAG synthesis by cultured chick scleral fibroblasts, and ii) binocular visual treatments comprising LIM and LIH with assessment of the effect of individual layers of eye cup tissues (neural retina, RPE and choroid) on cultured chick scleral fibroblasts. Visual treatment was applied for 3 days. Experiment 2: To determine the direct interaction of GABA agents on scleral cell growth and to establish whether GABA agents modify the stimulatory/inhibitory effect of myopic and hyperopic posterior eye cup tissues on cultured scleral cell growth in vitro. Two linked experiments were performed. i) GABA agonists (muscimol and baclofen) and GABA antagonists (bicuculine (-), CGP46381 and TPMPA) were added to scleral cell culture medium to determine their direct effect on scleral cells. ii) GABAergic agents (agonists and antagonists) were administered to scleral fibroblasts co-cultured with posterior eye cup tissue (retina, RPE, retina/RPE, RPE/choroid). Ocular tissues were obtained from chick eyes wearing +15D (LIH) or -15D lenses (LIM) for 3 days. In both experiments, tissues were added to hanging cell culture insert (pore size 1.0ìm) placed over each well of 24 well plates while scleral cells were cultured in DMEM/F12, Glutamax (Gibco) plus 10% FBS and penicillin/streptomycin (50U/ml)) and fungizone (1.25ug/ml) (Gibco), at seeding density of 30,000 cells/well at the bottom of the well and allowed to grow for 3 days. Scleral cells proliferation rate throughout the study was evaluated by determining GAG and DNA content of scleral cells using Dimethylmethylene blue (DMMB) dye and Quant-iTTm Pico Green® dsDNA reagent respectively. Results and analysis: Based on DNA and GAG content, there was no significant difference in tissue effect of LIM and LIH eyes on scleral fibroblast growth (DNA: 8.4 ± 1.1μg versus 9.3 ± 2.3 μg, p=0.23; GAG: 10.13 ± 1.4 μg versus 12.67 ± 1.2 μg, F2,23=6.16, p=0.0005) when tissues were obtained from monocularly treated chick eyes (FDM or +15D lens or -15D lens over right eyes with left eyes untreated) and co-cultured as full punch. When chick eyes were treated binocularly with -15D lens (LIM) right eye and +15D lens (LIH) left eyes and tissue layers were separated, the retina from LIM eyes did not stimulate scleral cell proliferation compared to LIH eyes (DNA: 27.2 ± 6.7 μg versus 23.2 ± 1.5 μg, p=0.23; GAG: 28.1 ±3.7 μg versus 28.7 ± 4.2 μg, p=0.21). Similarly, the LIH and LIM choroid did not produce a differential effect based on DNA (LIM 46.9 ± 6.4 μg versus LIH 53.5 ± 4.7 μg, p=0.18), however the choroid from LIH eyes induced higher scleral GAG content than from LIM eyes (32.5 ± 6.7 μg versus 18.9 ± 1.2 μg, p=0.023). In contrast, the RPE from LIM eyes caused a significant increase in fibroblast proliferation whereas the RPE from LIH eyes was relatively inhibitory (72.4 ± 6.3 μg versus 27.9 ± 2.3 μg, F1, 6=69.99, p=0.0005). GAG data were opposite to DNA data e.g. the RPE from LIH eyes increased (33.7 ± 7.9 μg) while the RPE from LIM eyes decreased (28.2 ± 3.0 μg) scleral cell growth (F1, 6=13.99, p=0.010). Based on DNA content, GABA agents had a small direct effect on scleral cell growth; GABA agonists increased (21.4 ± 1.0% and 18.3 ± 1.0% with muscimol and baclofen, p=0.0021), whereas GABA antagonists decreased fibroblast proliferation (-23.7 ± 0.9% with bicuculine & CGP46381 and -28.1 ± 0.5% with TPMPA, p=0.0004). GABA agents also modified the effect of LIM and LIH tissues (p=0.0005).The increase in proliferation rate of scleral fibroblasts co-cultured with tissues (RPE, retina, RPE/retina and RPE/choroid) from LIM treated eyes was enhanced by GABA agonists (muscimol: 27.4 ± 1.2%, 35.8 ± 1.6%, 8.4 ± 0.3% and 11.9 ± 0.6%; baclofen: 27.0 ± 1.0%, 15.8 ± 1.5%, 16.8 ± 1.2% and 15.4 ± 0.4%, p=0.014) whereas GABA antagonists further reduced scleral fibroblasts growth (bicuculine: -52.5 ± 2.5%, -36.9 ± 1.4%, -37.5 ± 0.6% and -53.7 ± 0.9%; TPMPA: 57.3 ± 1.3%, -15.7 ± 1.2%, -33.5 ± 0.4% and -45.9 ± 1.5%; CGP46381: -51.9 ± 1.6%, -28.5 ± 1.5%, -25.4 ± 2.0% and -45.5 ± 1.9% respectively, p=0.0034). GAG data were opposite to DNA data throughout the experiment e.g. GABA agonists further inhibited while antagonists relatively enhanced scleral fibroblasts growth for both LIM and LIH tissue co-culture. The effect of GABA agents was relatively lower (p=0.0004) for tissue from LIH versus LIM eyes but was in a similar direction. There was a significant drug effect on all four tissue types e.g. RPE, retina, RPE/retina and RPE/choroid for both LIM and LIH tissue co-culture (F20,92=3.928, p=0.0005). However, the effect of GABA agents was greatest in co-culture with RPE tissue (F18,36=4.865, p=0.0005). Summary and Conclusion: 1) Retinal defocus signals are transferred to RPE and choroid which then exert their modifying effect on scleral GAG and DNA synthesis either through growth stimulating factors or directly interacting with scleral cells in process of scleral remodeling during LIM and LIH visual conditions. 2) GABAergic agents affect the proliferation of scleral fibroblasts both directly and when co-cultured with ocular tissues in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The review details the development of the Subunit Vaccine Group at the University of Cape Town, from its beginnings as a plant virology laboratory in the 1980s. The investigation and development of Human papillomavirus (HPV) and Human immunodeficiency vaccine candidates are covered in detail, with an emphasis on how this work allowed the evolution of a systematic approach to the optimisation of expression of these and other proteins especially in plants, but also in insect cell culture. We discuss various insights gained during our work, such as approaches to codon optimisation, use of different vector systems and plant hosts, intracellular targetting and gene modification. The future prospects for both our work and for the field of plant-made vaccines in general, are discussed. © 2011 Landes Bioscience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are emerging as a leading cellular therapy for a number of diseases. However, for such treatments to become available as a routine therapeutic option, efficient and cost-effective means for industrial manufacture of MSC are required. At present, clinical grade MSC are manufactured through a process of manual cell culture in specialized cGMP facilities. This process is open, extremely labor intensive, costly, and impractical for anything more than a small number of patients. While it has been shown that MSC can be cultivated in stirred bioreactor systems using microcarriers, providing a route to process scale-up, the degree of numerical expansion achieved has generally been limited. Furthermore, little attention has been given to the issue of primary cell isolation from complex tissues such as placenta. In this article we describe the initial development of a closed process for bulk isolation of MSC from human placenta, and subsequent cultivation on microcarriers in scalable single-use bioreactor systems. Based on our initial data, we estimate that a single placenta may be sufficient to produce over 7,000 doses of therapeutic MSC using a large-scale process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three dimensional cellular models that mimic disease are being increasingly investigated and have opened an exciting new research area into understanding pathomechanisms. The advantage of 3D in vitro disease models is that they allow systematic and in-depth studies of physiological and pathophysiological processes with less costs and ethical concerns that have arisen with animal models. The purpose of the 3D approach is to allow crosstalk between cells and microenvironment, and with cues from the microenvironment, cells can assemble their niche similar to in vivo conditions. The use of 3D models for mimicking disease processes such as cancer, osteoarthritis etc., is only emerging and allows multidisciplinary teams consisting of tissue engineers, biologist biomaterial scientists and clinicians to work closely together. While in vitro systems require rigorous testing before they can be considered as replicates of the in vivo model, major steps have been made, suggesting that they will become powerful tools for studying physiological and pathophysiological processes. This paper aims to summarize some of the existing 3D models and proposes a novel 3D model of the eye structures that are involved in the most common cause of blindness in the Western World, namely age-related macular degeneration (AMD).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.