947 resultados para Cancer systems biology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic Nuclear Polarization (DNP) is an emerging technique that could revolutionize the NMR study of small molecules at very low concentrations by the increase in sensitivity that results from transfer of polarization between electronic and nuclear spins. Although the underlying physics has been known for a long time, in the last few years there has been a lot of excitement on the chemistry and biology NMR community caused by the demonstration that the highly polarized nuclei that are prepared in solid state at very low temperatures (1-2 K) could be rapidly transferred to liquid samples at room temperature and studied in solution by conventional NMR techniques. In favorable cases several order of magnitude increases in sensitivity have been achieved. The technique is now mature enough that a commercial instrument is available. The efficiency of DNP depends on two crucial aspects: i) the efficiency of the nuclear polarization process and ii) the efficiency of the transfer from the initial solid state to the fluid state in which NMR is measured. The preferred areas of application (iii) will be dictated by situations in which the low concentration of the sample or its intrinsic low receptivity are the limiting factors .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le cancer est défini comme la croissance incontrôlée des cellules dans le corps. Il est responsable de 20 % des décès en Europe. Plusieurs expériences montrent que les tumeurs sont issues et se développent grâce à un petit nombre de cellules, que l'on appelle cellules souches cancéreuses (CSC). Ces CSC sont également responsables de l'apparition de métastases et de la résistance aux médicaments anticancéreux. De ce fait, l'identification des gènes qui contribuent aux propriétés de ces CSC (comme la survie des tumeurs, les métastases et la résistance aux médicaments) est nécessaire pour mieux comprendre la biologie des cancers et d'améliorer la qualité des soins des patients avec un cancer. A ce jour, de nombreux marqueurs ont été proposés ainsi que de nouvelles thérapies ciblées contre les CSC. Toutefois, et malgré les énormes efforts de la recherche dans ce domaine, la quasi-totalité des marqueurs de CSC connus à ce jour sont aussi exprimés dans les cellules saines. Ce projet de recherche visait à trouver un nouveau candidat spécifique des CSC. Le gène BORIS (pour Brother of Regulator of Imprinted Sites), nommé aussi CTCFL (CTCF-like), semble avoir certaines caractéristiques de CSC et pourrait donc devenir une cible prometteuse pour le traitement du cancer. BORIS/CTCFL est une protéine nucléaire qui se lie à l'ADN, qui est exprimée dans les tissus normaux uniquement dans les cellules germinales et qui est réactivée dans un grand nombre de tumeurs. BORIS est impliqué dans la reprogrammation épigénétique au cours du développement et dans la tumorigenèse. En outre, des études récentes ont montré une association entre l'expression de BORIS et un mauvais pronostic chez des patients atteints de différents types de cancers. Nous avons développé une nouvelle technologie basée sur les Molecular Beacon pour cibler l'ARNm de BORIS et cela dans les cellules vivantes. Grâce à ce système expérimental, nous avons montré que seule une toute petite sous-population (0,02 à 5%) de cellules tumorales exprimait fortement BORIS. Les cellules exprimant BORIS ont pu être isolées et elles présentaient les caractéristiques de CSC, telles qu'une forte expression de hTERT et des gènes spécifiques des cellules souches (NANOG, SOX2 et OCT4). En outre, une expression élevée de BORIS a été mise en évidence dans des populations enrichies en CSC ('side population' et sphères). Ces résultats suggèrent que BORIS pourrait devenir un nouveau et important marqueur de CSC. Dans des études fonctionnelles sur des cellules de cancer du côlon et du sein, nous avons montré que le blocage de l'expression de BORIS altère largement la capacité de ces cellules à former des sphères, démontrant ainsi un rôle essentiel de BORIS dans l'auto- renouvellement des tumeurs. Nos expériences montrent aussi que BORIS est un facteur important qui régule l'expression de gènes jouant un rôle clé dans le développement et la progression tumorale, tels le gène hTERT et ceux impliqués dans les cellules souches, les CSC et la transition épithélio-mésenchymateuse (EMT). BORIS pourrait affecter la régulation de la transcription de ces gènes par des modifications épigénétiques et de manière différente en fonction du type cellulaire. En résumé, nos résultats fournissent la preuve que BORIS peut être classé comme un gène marqueur de cellules souches cancéreuse et révèlent un nouveau mécanisme dans lequel BORIS jouerait un rôle important dans la carcinogénèse. Cette étude ouvre de nouvelles voies pour mieux comprendre la biologie de la progression tumorale et offre la possibilité de développement de nouvelles thérapies anti-tumorales et anti-CSC avec BORIS comme molécule cible. - Cancer is defined as the uncontrolled growth of cells in the body. It causes 20% of deaths in the European region. Current evidences suggest that tumors originate and are maintained thanks to a small subset of cells, named cancer stems cells (CSCs). These CSCs are also responsible for the appearance of metastasis and therapeutic resistance. Consequently, the identification of genes that contribute to the CSC properties (tumor survival, metastasis and therapeutic resistance) is necessary to better understand the biology of malignant diseases and to improve care management. To date, numerous markers have been proposed to use as new CSC- targeted therapies. Despite the enormous efforts in research, almost all of the known CSCs markers are also expressed in normal cells. This project aimed to find a new CSC-specific candidate. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA binding protein involves in epigenetic reprogramming in normal development and in tumorigenesis. Recent studies have shown an association of BORIS expression with a poor prognosis in different types of cancer patients. Therefore, BORIS seems to have the same characteristics of CSCs markers and it could be a promising target for cancer therapy. BORIS is normally expressed only in germinal cells and it is re-expressed in a wide variety of tumors. We developed a new molecular beacon-based technology to target BORIS mRNA expressing cells. Using this system, we showed that the BORIS expressing cells are only a small subpopulation (0.02-5%) of tumor cells. The isolated BORIS expressing cells exhibited the characteristics of CSCs, with high expression of hTERT and stem cell genes (NANOG, SOX2 and OCT4). Furthermore, high BORIS expression was observed in the CSC-enriched populations (side population and spheres). These results suggest that BORIS might be a novel and powerful CSCs marker. In functional studies, we observed that BORIS knockdown significantly impairs the capacity to form spheres in colon and breast cancer cells, thus demonstrating a critical role of BORIS in the self-renewal of tumors. The results showed in the functional analysis indicate that BORIS is an important factor that regulates the expression of key-target genes for tumor development and progression, such as hTERT, stem cells, CSCs markers and EMT (epithelial mesenchymal transition)-related marker genes. BORIS could affect the transcriptional regulation of these genes by epigenetic modification and in a cell type dependent manner. In summary, our results support the evidence that BORIS can be classified as a cancer stem cell marker gene and reveal a novel mechanism in which BORIS would play a critical role in tumorigenesis. This study opens new prospective to understand the biology of tumor development and provides opportunities for potential anti-tumor drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The WHO classification of breast tumors distinguishes, besides invasive breast cancer 'of no special type' (former invasive ductal carcinoma, representing 60-70% of all breast cancers), 30 special types, of which invasive lobular carcinoma (ILC) is the most common (5-15%). We review the literature on (i) the specificity and heterogeneity of ILC biology as documented by various analytical techniques, including the results of molecular testing for risk of recurrence; (ii) the impact of lobular histology on prediction of prognosis and effect of systemic therapies in patients. Though it is generally admitted that ILC has a better prognosis than IDC, is endocrine responsive, and responds poorly to chemotherapy, currently available data do not unanimously support these assumptions. This review demonstrates some lack of specific data and a need for improving clinical research design to allow oncologists to make informed systemic therapy decisions in patients with ILC. Importantly, future studies should compare various endpoints in ILC breast cancer patients among the group of hormonosensitive breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Epithelial cell adhesion molecule (Ep-CAM) recently received increased attention not only as a prognostic factor in breast cancer but also as a potential target for immunotherapy. We examined Ep-CAM expression in 402 consecutive node-negative breast cancer patients with long-term follow-up not treated in the adjuvant setting. EXPERIMENTAL DESIGN: Ep-CAM expression was evaluated by immunostaining. Its prognostic effect was estimated relative to overexpression/amplification of HER-2, histologic grade, tumor size, age, and hormone receptor expression. RESULTS: Ep-CAM status was positive in 106 (26.4%) patients. In multivariate analysis, Ep-CAM status was associated with disease-free survival independent of age, pT stage, histologic grade, estrogen receptor (ER), progesterone receptor (PR), as well as HER2 status (P = 0.028; hazard ratio, 1.60; 95% confidence interval, 1.05-2.44). Recently, so-called triple-negative (HER-2, ER, and PR) breast cancer has received increased attention. We noticed a similar association of Ep-CAM with disease-free survival in the triple-negative group as for the entire cohort. CONCLUSION: In this study of untreated breast cancer patients, Ep-CAM overexpression was associated with poor survival in the entire cohort and in the subgroup of triple-negative breast cancer. This suggests that Ep-CAM may be a well-suited target for specific therapies particularly in HER-2-, ER-, and PR-negative tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Breast cancer in younger women has received increased attention in recent years. Although breast cancer is uncommon in young women, it is the most frequent cancer and the leading cause of cancer death for younger women in developed countries. For Switzerland, the United States and several European countries, declines in breast cancer incidence have been reported since around the year 2000, after decades of increase, among women aged 50 and older. On the other hand an increase in the incidence of breast cancer in younger women has been reported in recent years. Therefore, this study aims to evaluate time trends in breast cancer incidence in younger women in Switzerland. Methods Data on invasive breast cancer cases were obtained from the Swiss Cancer Registries of Basel, Fribourg, Geneva, Graubunden/Glarus, Jura, Neuchatel, St. Gallen-Appenzell, Ticino, Valais, Vaud and Zurich, covering the time period 1996 to 2009. Mid-year population estimates for the respective time period were supplied by the Swiss Federal Statistical Office. For females aged 20-49 years, annual age-standardized incidence rates (ASIRs) (European standard) per 100,000 person-years and corresponding 95%-confidence intervals (95% CI) were calculated. For females aged 20-39 and 40-49 years, ASIRs and incidence rate ratios (IRRs) were calculated by grouped time periods, consisting of 3-5 incidence years. IRRs and corresponding 95% CI were calculated using Poisson regression adjusting for age (reference period 1996-2000). Results ASIRs in females aged 20-49 increased gradually since 1996, being 57.36 per 100,000 person-years in 1996 (95% CI 52.54-62.51) and rising to 68.34 (95% CI 63.40-73.57) per 100,000 person-years in 2009. Comparing the time-period 2007-2009 and the reference period 1996-2000, IRRs show values of 1.17 (95% CI 1.04-1.31) for the age-group 20-39 years and 1.04 (95% CI 0.97-1.10) for the age-group 40-49 years. Conclusions Our findings confirm a slight increase in the incidence of invasive breast cancer in younger women in Switzerland during the period 1996-2009. An increase in breast cancer incidence in younger patients is an important public health problem. It warrants further investigations to identify specific risk factors of this population and to better understand the biology of this particular breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant cells are frequently recognized and destroyed by T cells, hence the development of T cell vaccines against established tumors. The challenge is to induce protective type 1 immune responses, with efficient Th1 and CTL activation, and long-term immunological memory. These goals are similar as in many infectious diseases, where successful immune protection is ideally induced with live vaccines. However, large-scale development of live vaccines is prevented by their very limited availability and vector immunogenicity. Synthetic vaccines have multiple advantages. Each of their components (antigens, adjuvants, delivery systems) contributes specifically to induction and maintenance of T cell responses. Here we summarize current experience with vaccines based on proteins and peptide antigens, and discuss approaches for the molecular characterization of clonotypic T cell responses. With carefully designed step-by-step modifications of innovative vaccine formulations, T cell vaccination can be optimized towards the goal of inducing therapeutic immune responses in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To assess the outcome and patterns of failure in patients with testicular lymphoma treated by chemotherapy (CT) and/or radiation therapy (RT). METHODS AND MATERIALS: Data from a series of 36 adult patients with Ann Arbor Stage I (n = 21), II (n = 9), III (n = 3), or IV (n = 3) primary testicular lymphoma, consecutively treated between 1980 and 1999, were collected in a retrospective multicenter study by the Rare Cancer Network. Median age was 64 years (range: 21-91 years). Full staging workup (chest X-ray, testicular ultrasound, abdominal ultrasound, and/or thoracoabdominal computer tomography, bone marrow assessment, full blood count, lactate dehydrogenase, and cerebrospinal fluid evaluation) was completed in 18 (50%) patients. All but one patient underwent orchidectomy, and spermatic cord infiltration was found in 9 patients. Most patients (n = 29) had CT, consisting in most cases of cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) with (n = 17) or without intrathecal CT. External RT was delivered to scrotum alone (n = 12) or testicular, iliac, and para-aortic regions (n = 8). The median RT dose was 31 Gy (range: 20-44 Gy) in a median of 17 fractions (10-24), using a median of 1.8 Gy (range: 1.5-2.5 Gy) per fraction. The median follow-up period was 42 months (range: 6-138 months). RESULTS: After a median period of 11 months (range: 1-76 months), 14 patients presented lymphoma progression, mostly in the central nervous system (CNS) (n = 8). Among the 17 patients who received intrathecal CT, 4 had a CNS relapse (p = NS). No testicular, iliac, or para-aortic relapse was observed in patients receiving RT to these regions. The 5-year overall, lymphoma-specific, and disease-free survival was 47%, 66%, and 43%, respectively. In univariate analyses, statistically significant factors favorably influencing the outcome were early-stage and combined modality treatment. Neither RT technique nor total dose influenced the outcome. Multivariate analysis revealed that the most favorable independent factors predicting the outcome were younger age, early-stage disease, and combined modality treatment. CONCLUSIONS: In this multicenter retrospective study, CNS was found to be the principal site of relapse, and no extra-CNS lymphoma progression was observed in the irradiated volumes. More effective CNS prophylaxis, including combined modalities, should be prospectively explored in this uncommon site of extranodal lymphoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed.Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Involvement of salivary glands with mucosa-associated lymphoid tissue (MALT) lymphoma is rare. This retrospective study was performed to assess the clinical profile, treatment outcome, and prognostic factors of MALT lymphoma of the salivary glands.Methods and Materials: Thirteen member centers of the Rare Cancer Network from 10 countries participated, providing data on 63 patients. The median age was 58 years; 47 patients were female and 16 were male. The parotid glands were involved in 49 cases, submandibular in 15, and minor glands in 3. Multiple glands were involved in 9 patients. Staging was as follows: IE in 34, IIE in 12, IIIE in 2, and IV in 15 patients.Results: Surgery (S) alone was performed in 9, radiotherapy (RI) alone in 8, and chemotherapy (CT) alone in 4 patients. Forty-one patients received combined modality treatment (S + RT in 23, S + CT in 8, RT + CT in 4, and all three modalities in 6 patients). No active treatment was given in one case. After initial treatment there was no tumor in 57 patients and residual tumor in 5. Tumor progression was observed in 23 (36.5%) (local in 1, other salivary glands in 10, lymph nodes in 11, and elsewhere in 6). Five patients died of disease progression and the other 5 of other causes. The 5-year disease-free survival, disease-specific survival, and overall survival were 54.4%, 93.2%, and 81.7%, respectively. Factors influencing disease-free survival were use of RI, stage, and residual tumor (p < 0.01). Factors influencing disease-specific survival were stage, recurrence, and residual tumor (p < 0.01).Conclusions: To our knowledge, this report represents the largest series of MALT lymphomas of the salivary glands published to date. This disease may involve all salivary glands either initially or subsequently in 30% of patients. Recurrences may occur in up to 35% of patients at 5 years; however, survival is not affected. Radiotherapy is the only treatment modality that improves disease-free survival. (C) 2012 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer immunotherapy has come a long way. The hope that immunological approaches may help cancer patients has sparked many initiatives in research and development (R&D). For many years, progress was modest and disappointments were frequent. Today, the increasing scientific and medical knowledge has established a solid basis for improvements. Considerable clinical success was first achieved for patients with hematological cancers. More recently, immunotherapy has entered center stage in the development of novel therapies against solid cancers. Together with R&D in angiogenesis, the field of immunology has fundamentally extended the scientific scope, which has evolved from a cancer-cell-centered view to a comprehensive and integrated vision of tumor biology. Current R&D is focused on a large array of possible disease mechanisms, driven by cancer cells, and amplified by tumor stroma, inflammatory and immunological actors, blood and lymph vessels, and the "macroenvironment," i.e. systemic mechanisms of the host, particularly of the haematopoietic system. Contrasting to this large spectrum of pathophysiological events promoting tumor growth, only a small number of biological mechanisms, namely of the immune system, have the potential to counteract tumor growth. They are of prime interest because therapeutic enhancement may result in clinical benefit for patients. This special issue is dedicated to immunotherapeutics against cancer, with particular emphasis on vaccination and combination therapies, providing updates and extended insight in this booming field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Many chemotherapeutic drugs, including fluoropyrimidines, platinums, CPT-11, taxanes and adriamycin have single-agent activity in advanced gastric cancer. Although combination chemotherapy has been shown to be more effective than single agents, response rates between 30 and 50% have not fulfilled their promise as progression-free survival from the best combinations ranges between 3 and 7 months and overall survival between 8 and 11 months. The development of targeted therapies in gastric cancer clearly stays behind the integration of these novel agents into new treatment concepts for patients with colorectal cancer. This review summarizes the experience and major recent advances in the development of targeted therapies in advanced gastric cancer. RECENT FINDINGS: Recent publications on targeted therapies in gastric cancer are limited to nonrandomized phase I or II trials. The majority of agents tested were angiogenesis inhibitors or agents targeting the epidermal growth factor receptors epidermal growth factor receptor 1 and HER2. SUMMARY: Adequately powered, randomized phase III trials are necessary to define the clinical role of targeted therapies in advanced gastric cancer. Biomarker studies to correlate with treatment outcomes will be critical to identify patients who benefit most from chemotherapy and targeted therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.