923 resultados para Caesium 137, standard deviation
Resumo:
Objective To identify the prevalence of and risk factors for inadvertent hypothermia after procedures performed with procedural sedation and analgesia in a cardiac catheterisation laboratory. Design Single-centre, prospective observational study. Setting Tertiary care private hospital in Australia. Participants A convenience sample of 399 patients undergoing elective procedures with procedural sedation and analgesia were included. Propofol infusions were used when an anaesthetist was present. Otherwise, bolus doses of either midazolam or fentanyl or a combination of these medications was used. Interventions None Measurements and main results Hypothermia was defined as a temperature <36.0° Celsius. Multivariate logistic regression was used to identify risk factors. Hypothermia was present after 23.3% (n=93; 95% confidence interval [CI] 19.2%-27.4%) of 399 procedures. Sedative regimens with the highest prevalence of hypothermia were any regimen that included propofol (n=35; 40.2%; 95% CI 29.9%-50.5%) and the use of fentanyl combined with midazolam (n=23; 20.3%; 95% CI 12.9%-27.7%). Difference in mean temperature from pre to post-procedure was -0.27°C (Standard deviation [SD] 0.45). Receiving propofol (odds ratio [OR] OR 4.6 95% CI 2.5-8.6), percutaneous coronary intervention (OR 3.2 95% CI 1.7-5.9), body mass index <25 (OR 2.5 95% CI 1.4-4.4) and being hypothermic prior to the procedure (OR 4.9; 95% CI 2.3-10.8) were independent predictors of post-procedural hypothermia. Conclusions A moderate prevalence of hypothermia was observed. The small absolute change in temperature observed may not be a clinically important amount. More research is needed to increase confidence in our estimates of hypothermia in sedated patients and its impact on clinical outcomes.
Resumo:
The aim of this study was to develop a new method for quantifying intersegmental motion of the spine in an instrumented motion segment L4–L5 model using ultrasound image post-processing combined with an electromagnetic device. A prospective test–retest design was employed, combined with an evaluation of stability and within- and between-day intra-tester reliability during forward bending by 15 healthy male patients. The accuracy of the measurement system using the model was calculated to be ± 0.9° (standard deviation = 0.43) over a 40° range and ± 0.4 cm (standard deviation = 0.28) over 1.5 cm. The mean composite range of forward bending was 15.5 ± 2.04° during a single trial (standard error of the mean = 0.54, coefficient of variation = 4.18). Reliability (intra-class correlation coefficient = 2.1) was found to be excellent for both within-day measures (0.995–0.999) and between-day measures (0.996–0.999). Further work is necessary to explore the use of this approach in the evaluation of biomechanics, clinical assessments and interventions.
Resumo:
This study aimed to take existing anatomical models of pregnant women, currently used for radiation pro-tection and nuclear medicine dose calculations, and adapt them for use in the calculation of fetal dose from external beam radiotherapy (EBRT). The models investigated were ‘KATJA’, which was provided as an MCNPX geometry file, and ‘RPI-P6’, which was provided in a simple, voxelized bina-ry format. In-house code was developed, to convert both mod-els into an `egsphant’ format, suitable for use with DOSXYZnrc. The geometries and densities of the resulting phantoms were evaluated and found to accurately represent the source data. As an example of the use of the phantoms, the delivery of a cranial EBRT treatment was simulated using the BEAMnrc and DOSXYZnrc Monte Carlo codes and the likely out-of-field doses to the fetus in each model was calculated. The results of these calculations showed good agreement (with-in one standard deviation) between the doses calculated in KATJA and PRI-P6, despite substantial anatomical differ-ences between the two models. For a 36 Gy prescription dose to a 233.2 cm3 target in the right brain, the mean doses calcu-lated in a region of interest covering the entire uterus were 1.0 +/- 0.6 mSv for KATJA and 1.3 +/- 0.9 mSv for RPI-P6. This work is expected to lead to more comprehensive studies of EBRT treatment plan design and its effects on fetal dose in the future.
Resumo:
The size and arrangement of stromal collagen fibrils (CFs) influence the optical properties of the cornea and hence its function. The spatial arrangement of the collagen is still questionable in relation to the diameter of collagen fibril. In the present study, we introduce a new parameter, edge-fibrillar distance (EFD) to measure how two collagen fibrils are spaced with respect to their closest edges and their spatial distribution through normalized standard deviation of EFD (NSDEFD) accessed through the application of two commercially available multipurpose solutions (MPS): ReNu and Hippia. The corneal buttons were soaked separately in ReNu and Hippia MPS for five hours, fixed overnight in 2.5% glutaraldehyde containing cuprolinic blue and processed for transmission electron microscopy. The electron micrographs were processed using ImageJ user-coded plugin. Statistical analysis was performed to compare the image processed equivalent diameter (ED), inter-fibrillar distance (IFD), and EFD of the CFs of treated versus normal corneas. The ReNu-soaked cornea resulted in partly degenerated epithelium with loose hemidesmosomes and Bowman’s collagen. In contrast, the epithelium of the cornea soaked in Hippia was degenerated or lost but showed closely packed Bowman’s collagen. Soaking the corneas in both MPS caused a statistically significant decrease in the anterior collagen fibril, ED and a significant change in IFD, and EFD than those of the untreated corneas (p < 0.05, for all comparisons). The introduction of EFD measurement in the study directly provided a sense of gap between periphery of the collagen bundles, their spatial distribution; and in combination with ED, they showed how the corneal collagen bundles are spaced in relation to their diameters. The spatial distribution parameter NSDEFD indicated that ReNu treated cornea fibrils were uniformly distributed spatially, followed by normal and Hippia. The EFD measurement with relatively lower standard deviation and NSDEFD, a characteristic of uniform CFs distribution, can be an additional parameter used in evaluating collagen organization and accessing the effects of various treatments on corneal health and transparency.
Resumo:
This study implemented linear and nonlinear methods of measuring variability to determine differences in stability of two groups of skilled (n = 10) and unskilled (n = 10) participants performing 3m forward/backward shuttle agility drill. We also determined whether stability measures differed between the forward and backward segments of the drill. Finally, we sought to investigate whether local dynamic stability, measured using largest finite-time Lyapunov exponents, changed from distal to proximal lower extremity segments. Three-dimensional coordinates of five lower extremity markers data were recorded. Results revealed that the Lyapunov exponents were lower (P < 0.05) for skilled participants at all joint markers indicative of higher levels of local dynamic stability. Additionally, stability of motion did not differ between forward and backward segments of the drill (P > 0.05), signifying that almost the same control strategy was used in forward and backward directions by all participants, regardless of skill level. Furthermore, local dynamic stability increased from distal to proximal joints (P < 0.05) indicating that stability of proximal segments are prioritized by the neuromuscular control system. Finally, skilled participants displayed greater foot placement standard deviation values (P < 0.05), indicative of adaptation to task constraints. The results of this study provide new methods for sport scientists, coaches to characterize stability in agility drill performance.
Resumo:
It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.
Resumo:
Introduction The Skin Self-Examination Attitude Scale (SSEAS) is a brief measure that allows for the assessment of attitudes in relation to skin self-examination. This study evaluated the psychometric properties of the SSEAS using Item Response Theory (IRT) methods in a large sample of men ≥ 50 years in Queensland, Australia. Methods A sample of 831 men (420 intervention and 411 control) completed a telephone assessment at the 13-month follow-up of a randomized-controlled trial of a video-based intervention to improve skin self-examination (SSE) behaviour. Descriptive statistics (mean, standard deviation, item–total correlations, and Cronbach’s alpha) were compiled and difficulty parameters were computed with Winsteps using the polytomous Rasch Rating Scale Model (RRSM). An item person (Wright) map of the SSEAS was examined for content coverage and item targeting. Results The SSEAS have good psychometric properties including good internal consistency (Cronbach’s alpha = 0.80), fit with the model and no evidence for differential item functioning (DIF) due to experimental trial grouping was detected. Conclusions The present study confirms the SSEA scale as a brief, useful and reliable tool for assessing attitudes towards skin self-examination in a population of men 50 years or older in Queensland, Australia. The 8-item scale shows unidimensionality, allowing levels of SSE attitude, and the item difficulties, to be ranked on a single continuous scale. In terms of clinical practice, it is very important to assess skin cancer self-examination attitude to identify people who may need a more extensive intervention to allow early detection of skin cancer.
Resumo:
Purpose We sought to analyse clinical and oncological outcomes of patients after guided resection of periacetabular tumours and endoprosthetic reconstruction of the remaining defect. Methods From 1988 to 2008, we treated 56 consecutive patients (mean age 52.5 years, 41.1 % women). Patients were followed up either until death or February 2011 (mean follow up 5.5 years, range 0.1–22.5, standard deviation ± 5.3). Kaplan–Meier analysis was used to estimate survival rates. Results Disease-specific survival was 59.9 % at five years and 49.7 % at ten and 20 years, respectively. Wide resection margins were achieved in 38 patients, whereas 11 patients underwent marginal and seven intralesional resection. Survival was significantly better in patients with wide or marginal resection than in patients with intralesional resection (p = 0.022). Survival for patients with secondary tumours was significantly worse than for patients with primary tumours (p = 0.003). In 29 patients (51.8 %), at least one reoperation was necessary, resulting in a revision-free survival of 50.5 % at five years, 41.1 % at ten years and 30.6 % at 20 years. Implant survival was 77.0 % at five years, 68.6 % at ten years and 51.8 % at 20 years. A total of 35 patients (62.5 %) experienced one or more complications after surgery. Ten of 56 patients (17.9 %) experienced local recurrence after a mean of 8.9 months. The mean postoperative Musculoskeletal Tumor Society (MSTS) score was 18.1 (60.1 %). Conclusion The surgical approach assessed in this study simplifies the process of tumour resection and prosthesis implantation and leads to acceptable clinical and oncological outcomes.
Resumo:
The nutritional profiles of 37 children (aged 0.5-14.0 years) with chronic liver disease at the time of acceptance for orthotopic liver transplantation (OLTP) have been evaluated using clinical, biochemical and body composition methods. Nutritional progress while waiting for a donor has been related to outcome, whether transplanted or not. At the time of acceptance, most children were underweight (mean standard deviation (s.d.) weight = -1.4 ± 0.2) and stunted (mean s.d. height = - 2.2 ± 0.4), had low serum albumin (27/35) and had reduced body fat and depleted body cell mass (measured by total body potassium - mean % expected for age = 58 ± 5%, n = 15). Mean ad libitum nutrient intake was 63 ± 5% of recommended daily intake (RDI). Those who died while waiting (n = 8) had significantly lower mean initial s.d. weight compared with those transplanted. The overall actuarial 1 year survival of those who were transplanted (mean waiting time = 75 days) was 81% but those who were initially well nourished (s.d. weight >-1.0) had an actuarial 1 year survival of 100%. There were no significant differences in actuarial survival in relationship to age, type of transplant (whole liver or segmental), liver biochemistry or the presence or absence of ascites. Of the total group accepted for OLTP, whether transplanted or not, the overall 1 year survival for those who were relatively well nourished was 88% and for those undernourished (initial s.d. weight <-1.0) was 38% (P<0.003). Declining nutritional status during the waiting period also adversely affected outcome. We conclude that malnutrition and/or declining nutritional status is a major factor adversely affecting survival in children awaiting OLTP. In transplant units where waiting time is greater than 40 days, earlier referral, prioritization of cases and the use of adult donor livers may reduce this risk and efforts to maintain or improve nutritional status deserve further study.
Resumo:
Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of ten acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both ‘primary’ (internal sample interface) and ‘secondary’ (external sample interface) echoes. A transit time spectrum (TTS) was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7±3.7% of the simulated data was within ±1 standard deviation (STD) of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R2) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Further, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy (PE-UTTS) include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts.
Resumo:
The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs vs. 0.18 μs standard deviation), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.
Resumo:
The growth of the Australian eastern king prawn (Melicertus plebejus) is understood in greater detail by quantifying the latitudinal effect. The latitudinal effect is the change in the species' growth rate during migration. Mark-recapture data (N = 1635, latitude 22.21 degrees S-34.00 degrees S) presents northerly movement of the eastern king prawn, with New South Wales prawns showing substantial average movement of 140 km (standard deviation: 176 km) north. A generalized von Bertalanffy growth model framework is used to incorporate the latitudinal effect together with the canonical seasonal effect. Applying this method to eastern king prawn mark-recapture data guarantees consistent estimates for the latitudinal and seasonal effects. For M. plebejus, it was found that growth rate peaks on 25 and 29 January for males and females, respectively; is at a minimum on 27 and 31 July, respectively; and that the shape parameter, k (per year), changes by -0.0236 and -0.0556 every 1 degree of latitude south increase for males and females, respectively.
Resumo:
Analyses of variance and co variance were carried out on the activities of three lysosomal enzymes in mononuclear blood cells from Brahman cattle. These were hexosaminidase (HEX), beta-D-galacto-sidase (GAL) and acid alpha-glucosidase (GLU) which had been measured in blood mononuclear cells from 1752 cattle from 6 herds in a Pompe's disease control programme. Herd of origin and date of bleeding significantly affected the level of activity of all enzymes. In addition, HEX and GAL were affected by age and HEX by the sex of the animal bled. Estimates of heritability from sire variances were 0.29:t 0.09 for HEX, 0.31 :t 0.09 for GAL and 0.44:t 0.09 for GLU. Genetic correlations between all enzymes were positive. The data indicate the existence of a major gene causing Pompe's disease and responsible for 16% of the genetic variation in GLU. One standard deviation of selection differential for high GLU should almost eliminate Pompe's disease from the population. The effi-ciency of selection would be aided by estimating the breeding value for GLU using measurements of HEX and GLU and taking account of an animal's sex, age, date of bleeding and herd of origin.
Resumo:
From a study of 3 large half-sib families of cattle, we describe linkage between DNA polymorphisms on bovine chromosome 7 and meat tenderness. Quantitative trait loci (QTL) for Longissimus lumborum peak force (LLPF) and Semitendonosis adhesion (STADH) were located to this map of DNA markers, which includes the calpastatin ( CAST) and lysyl oxidase (LOX) genes. The LLPF QTL has a maximum lodscore of 4.9 and allele substitution of approximately 0.80 of a phenotypic standard deviation, and the peak is located over the CAST gene. The STADH QTL has a maximum lodscore of 3.5 and an allele substitution of approximately 0.37 of a phenotypic standard deviation, and the peak is located over the LOX gene. This suggests 2 separate likelihood peaks on the chromosome. Further analyses of meat tenderness measures in the Longissimus lumborum, LLPF and LL compression (LLC), in which outlier individuals or kill groups are removed, demonstrate large shifts in the location of LLPF QTL, as well as confirming that there are indeed 2 QTL on bovine chromosome 7. We found that both QTL are reflected in both LLPF and LLC measurements, suggesting that both these components of tenderness, myofibrillar and connective tissue, are detected by both measurements in this muscle.
Resumo:
Grass (monocots) and non-grass (dicots) proportions in ruminant diets are important nutritionally because the non-grasses are usually higher in nutritive value, particularly protein, than the grasses, especially in tropical pastures. For ruminants grazing tropical pastures where the grasses are C-4 species and most non-grasses are C-3 species, the ratio of C-13/C-12 in diet and faeces, measured as delta C-13 parts per thousand, is proportional to dietary non-grass%. This paper describes the development of a faecal near infrared (NIR) spectroscopy calibration equation for predicting faecal delta C-13 from which dietary grass and non-grass proportions can be calculated. Calibration development used cattle faeces derived from diets containing only C-3 non-grass and C-4 grass components, and a series of expansion and validation steps was employed to develop robustness and predictive reliability. The final calibration equation contained 1637 samples and faecal delta C-13 range (parts per thousand) of [12.27]-[27.65]. Calibration statistics were: standard error of calibration (SEC) of 0.78, standard error of cross-validation (SECV) of 0.80, standard deviation (SD) of reference values of 3.11 and R-2 of 0.94. Validation statistics for the final calibration equation applied to 60 samples were: standard error of prediction (SEP) of 0.87, bias of -0.15, R-2 of 0.92 and RPD of 3.16. The calibration equation was also tested on faeces from diets containing C-4 non-grass species or temperate C-3 grass species. Faecal delta C-13 predictions indicated that the spectral basis of the calibration was not related to C-13/C-12 ratios per se but to consistent differences between grasses and non-grasses in chemical composition and that the differences were modified by photosynthetic pathway. Thus, although the calibration equation could not be used to make valid faecal delta C-13 predictions when the diet contained either C-3 grass or C-4 non-grass, it could be used to make useful estimates of dietary non-grass proportions. It could also be ut :sed to make useful estimates of non-grass in mixed C-3 grass/non-grass diets by applying a modified formula to calculate non-grass from predicted faecal delta C-13. The development of a robust faecal-NIR calibration equation for estimating non-grass proportions in the diets of grazing cattle demonstrated a novel and useful application of NIR spectroscopy in agriculture.