947 resultados para CROSS FLOW HEAT EXCHANGERS
Resumo:
Cogeneration may be defined as the simultaneous production of electric power and useful heat from the burning of a single fuel. This technique of combined heat and power production has been applied in both the industrial and tertiary sectors. It has been mainly used because of its overall efficiency, and the guarantee of electricity with a low level of environmental impact. The compact cogeneration systems using internal combustion engine as prime movers are thoroughly applied because of the good relationship among cost and benefit obtained in such devices. The cogeneration system of this study consists of an internal combustion engine using natural gas or biogas as fuel, combined with two heat exchangers and an absorption chiller utilising water-ammonia as working mixture. This work presents an energetic and economic comparison between natural gas and biogas as fuel used for the system proposed. The results are useful to identify the feasible applications for this system, such as residential sector in isolated areas, hotels, universities etc. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The term refrigeration solar refers to any air conditioning system that uses solar energy as a primary energy source. The use of solar radiation for cooling purposes is divided according to their technological possibilities which are distinguished from one another as the way that energy is involved in the cycle, work or heat. The first case is related to vapor compression cycles, in which the work input is provided by the photovoltaic conversion of solar energy into electrical energy. In the second case, an absorption refrigeration cycle is used and the thermal energy collected from the solar radiation is provided at the generator of this cycle.. In this work a system with an absorption cycle using the pair BrLi-water, using solar energy as input is modeled. It is considered a simple refrigeration cycle whose the equations of mass and energy conservation in each component are developed in order to obtain an algebraic equation set and a simulation routine using the EES software. Although the simulation operates under certain specified thermal load it is possible to estimate the necessary areas of heat exchangers and solar collectors
Resumo:
Within the concepts of sustainability, energy audit magnified its importance in managing systems in industrial plants. Can reduce waste and save energy representative, the improvement and development of thermal and electrical systems can be very attractive to business. With the focus on a boiler generating steam, the energy audit aimed to increase efficiency and eliminate energy losses of the heat engine. The boiler in question is commonly called CO boiler because most of the calorific power provided comes from this. Using a fuel gas from the catalyst regeneration process, it has featured in the boiler power generation system of the refinery. Burning a mixture of gaseous components from discarded into the atmosphere, the heat engine can generate tons of steam just as the other boilers installed. The challenge was to work with this gas mixture and obtain maximum efficiency, reduce moisture and enjoy the warmth of the heat exchange have been studied and recommended. Every project, from evaluation of the variables in the composition of fuel gas, to the using of heat exchangers and refrigeration system are suitable for evaluation and improvements
Resumo:
The aim of this work is to make a qualitatively and ecologically evaluation of a compact cogeneration system that operates with synthesis gas obtained from a gasifier. Using the Eucalyptus Biomass as fuel, that passes through a wood gasifier (Drowndraft type) and supply the internal combustion engine. The compact cogeneration system is composed of two heat exchangers, an energy generator connected to an internal combustion engine and an absorption refrigeration system. The complete system is installed in the laboratory from the Energy Department at the University of Guaratinguetá. By the analysis related to the First and Second Thermodynamic Laws applied in this system, was possible to identify the mass flows in each point, energetic efficiency, irreversibility and exergetic efficiency. The components that have the biggest irreversibilities are the gasifier, followed by the internal combustion engine, which should be focused in future improvements. The system efficiency in energetic basis is 51,84% and in exergetic basis is 22,78%. Using the ecologic efficiency methodology was possible to identify the emissions rates, the pollution indicator associated to the combustion of the synthesis gas in the internal combustion engine. The ecologic efficiency considering the energectic analysis is 91,73%, while considering the exergetic analysis, 83,65%. It is concluded that the use of the synthesis gas in a compact cogeneration system is viable from the technical and ecological point of view, making possible to generate energy for isolated communities and promoting the decentralized electricity generation
Resumo:
Physics governs all working patterns of the universe and could not be otherwise in a biological environment. Living things depend directly on laws and physical models to compose their body structure, allow its survival in certain environments, communication between individuals and groups and also to establish a complex sensorial system that allows interaction with the environment that surrounds them. With the advancement of science and technology, new ideas are required, and thus, many researchers began to turn their attention to those systems found in nature, as these systems often present practical solutions and with maximum efficiency. This imitation of biological systems, applied in creating innovative technological resources, is called Biomimetics. To study the biological systems based on physical concepts is essential the creation of models. These allow the distinction of the effects of the issue really essential and may be ignored side effects that do not have an effective participation in the phenomenon being analyzed. In this Work Completion of course will be studied the phenomenon of countercurrent heat exchangers, present in various situations of nature, focusing on their participation in the legs of birds, also the balance of certain birds that are supported on one leg and possible inspiration of these phenomena in the fields of engineering. Also included are videos that allow better understanding of the studied subjects
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an analysis of an irreversible Otto cycle aiming to optimize the net power through ECOP and ecological function. The studied cycle operates between two thermal reservoirs of infinite thermal capacity, with internal irreversibilities derived from non-isentropic behavior of compression and expansion processes, irreversibilities from thermal resistance in heat exchangers and heat leakage from the high temperature reservoir to the low temperature reservoir. Analytical expressions are applied for the power outputs optimized by the ECOP, by the ecological function and by the maximum power criteria, in conjunction with a graphic analysis, in which some cycle operation parameters are analyzed for an increased comprehension of the effects of the irreversibilities in the optimized power.
Resumo:
A mathematical model is developed for an irreversible Brayton cycle with regeneration, inter-cooling and reheating. The irreversibility are from the thermal resistance in the heat exchangers, the pressure drops in pipes, the non-isentropic behavior in the adiabatic expansions and compressions and the heat leakage to the cold source. The cycle is optimized by maximizing the ecological function, which is achieved by the search for optimal values for the temperatures of the cycle and for the pressure ratios of the first stage compression and the first stage expansion. The advantages of using the regenerator, intercooler and reheater are presented by comparison with cycles that do not incorporate one or more of these processes. Optimization results are compared with those obtained by maximizing the power output and it is concluded that the point of maximum ecological function has major advantages with respect to the entropy generation rate and the thermal efficiency, at the cost of a small loss in power.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Stricter environmental policies are shown necessary to ensure an effective pollutant emission control. It is expected for the present year of 2015, that Brazil will assume, at the 21th United Nation's Climate Change Conference (COP21), implementation of commitment to a low carbon economy. This positioning affects the industrial environment, so that is deemed necessary to search for new technologies, less aggressive to the environment, so the adequacies to the new emission policies do not cause a negative effect on production. Almost all of the processes performed in the steel industry demand burning fuel and, therefore, flue gases are sent to the atmosphere. In this present work is discussed the utilization of heat exchangers so, by recovering part of the available heat from the flue gases of certain industrial process, the combustion air is preheated. The combustion air preheat results in less energy requirement, i.e., less need of fuel consumption and, in addition, minor amount of pollutants to be emitted. Due to better fitting to the process, it is studied the utilization of spiral plate heat exchangers. The heat exchanger dimensioning is made by an iterative method implemented in the software Microsoft Excel. Subsequently are analyzed the gains in terms of process's thermal efficiency improvement and the percentage of fuel saving. The latter implies in reduction of the same percentage of greenhouse gases emission
Resumo:
Stricter environmental policies are shown necessary to ensure an effective pollutant emission control. It is expected for the present year of 2015, that Brazil will assume, at the 21th United Nation's Climate Change Conference (COP21), implementation of commitment to a low carbon economy. This positioning affects the industrial environment, so that is deemed necessary to search for new technologies, less aggressive to the environment, so the adequacies to the new emission policies do not cause a negative effect on production. Almost all of the processes performed in the steel industry demand burning fuel and, therefore, flue gases are sent to the atmosphere. In this present work is discussed the utilization of heat exchangers so, by recovering part of the available heat from the flue gases of certain industrial process, the combustion air is preheated. The combustion air preheat results in less energy requirement, i.e., less need of fuel consumption and, in addition, minor amount of pollutants to be emitted. Due to better fitting to the process, it is studied the utilization of spiral plate heat exchangers. The heat exchanger dimensioning is made by an iterative method implemented in the software Microsoft Excel. Subsequently are analyzed the gains in terms of process's thermal efficiency improvement and the percentage of fuel saving. The latter implies in reduction of the same percentage of greenhouse gases emission
Resumo:
In this work, the effect of various casting solution salt dopants with similar cations, but different anions: (NaPO3)(6), Na2SO4, Na2CO3, NaCl, and NaF, on the morphology and performance of polyethersulfone ultrafiltration membranes was evaluated. The phase inversion process was used to produce all membranes using an 18% polyethersulfone in n-methylpyrrolidone casting solution and water as the non-solvent. Scanning electron microscopy (SEM) images of the membrane cross-section and surface pores were used to determine the specific anion effects on membrane morphology. The SEM images depicted significant changes to the membrane internal structure and pore size with respect to the type and concentration of the casting solution anion dopant. Membrane permeability, molecular weight cut-off, alginate retention, and susceptibility to fouling were evaluated using ultrapure water dead-end and ultrapure water, aqueous polyethylene glycol, aqueous sodium alginate, and natural surface water cross-flow filtration tests. Among the anions evaluated, hexametaphosphate doped at 1% w/w to the polymer resulted in the membrane with highest dead-end permeability at 490 LMH-bar (2- to 3-fold greater than the control), greatest alginate retention at 96.5%, and lowest susceptibility to fouling. The significant increase in membrane performance indicates that the hexametaphosphate anion has great potential to be used as a membrane casting solution dopant. It was also clearly demonstrated that membrane pore morphological characteristics can be effectively used to predict drinking water treatment performance. (C) 2012 Elsevier B.V. All rights reserved.