985 resultados para COPPER(II) TEREPHTHALATE
Resumo:
The rate of electronic energy transfer (EET) between a naphthalene donor and an anthracene acceptor in [ZnL3]-(ClO4)(2) and [ZnL4](ClO4)(2) was determined by time-resolved fluorescence measurements, where L 3 and L 4 are the geometrical isomers of 6-[(anthracen-9-ylmethyl)amino]-trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-13-amine (L-2), substituted with either a naphthalen-1-ylmethyl or naphthalen-2-ylmethyl donor, respectively. The energy transfer rate constant, k(EET), was determined to be (0.92 +/- 0.02) x 10(9) s(-1) for the naphthalen-1-ylmethyl-substituted isomer, while that for the naphthalen-2-ylmethyl-substituted isomer is somewhat faster, with k(EET) = (1.31 +/- 0.01) x 10(9) s(-1). The solid-state structure of [(ZnLCl)-Cl-3]ClO4 has been determined, and using molecular modeling calculations, the likely distributions of solution conformations in CH3CN have been evaluated for both complexes. The calculated conformational distributions in the common trans-III N-based isomeric form gave Forster EET rate constants that account for the differences observed and are in excellent agreement with the experimental values. It is shown that the full range of conformers must be considered to accurately reproduce the observed EET kinetics.
Resumo:
The temperature dependence of the structure of the mixed-anion Tutton salt K-2[Cu(H2O)(6)](SO4)(2x)(SeO4)(2-2x) has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)(6)](2+) ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O)(6)](2+) ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes.
Resumo:
Several pathways to macromonocylic polyamine ligands with pendent hydroxymethyl substituents have been explored. The new ligands have all been characterised by single-crystal, X-ray structure determinations on their complexes with Co(III) (one case) and Cu(II). As in some related systems, four-membered ring species, here oxetanes rather than azetidines, appear to be involved as reaction intermediates and can be quite readily isolated, providing reactants of potential for the construction of even more complicated multidentate ligands. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
2-(2-pyridyl)phenyl(p-ethoxyphenyl)tellurium(II), (RR1Te) reacts with HgC12 at room temperature to give white HgCl2.RR1Te. On setting aside, or on warming the reaction mixture a yellow material, [R1HgCl.(RTeCl)2] is formed. Multinuclear NMR(125Te, 199Hg, 1H) and mass spectroscopy confirm the formulation, and confirm the ease of transfer of the p-ethoxyphenyl group (R1) between the metal centres. The crystal structure of the yellow material consists of two discrete RTeCl molecules together with a R1HgCl molecule. There is no dative bond formation between these species, hence the preferred description of the formation of an inclusion complex. The reaction of RR1Te with Copper(I) chloride in the cold gives an air sensitive yellow product Cu3Cl3(RR1Te)2(0.5CH3CN); under reflux in air changes to the green Cu2Cl(RR1Te)(0.5 EtOH). By contrast, the reaction of RR1Te with acetonitrile solution of Copper(II) salts under mild conditions affords the white materials CuCl(RR1Te) and CuBr(RR1Te)H2O. RR1Te reacts with PdCl2 and PtCl2 to give materials albeit not well defined, can be seen as intermediates to the synthesis of inorganic phase of the type M3XTe2XCl2X. Paramagnetism is associated with some of the palladium and platinum products. The 195Pt NMR measurement in DMSO establishes the presence of six platinum species, which are assigned to Pt(IV), Pt(III) or Pt(II). The reactions show that in the presence of PdCl2 or PtCl2 both R and R1 are very labile. The reaction of RHgCl(R= 2-(2-pyridyl)phenyl) with SeX4(X= Cl, Br) gives compounds which suggest that both Trans-metallation and redox processes are involved. By varying reaction conditions materials which appear to be intermediates in the trans-metallation process are isolated. Potentially bidentate tellurium ligands having molecular formula RTe(CH2)nTeR,Ln, (R= Ph,(t-Bu). C6H4, n = 5,10) are prepared. Palladium and Platinum complexes containing these ligands are prepared. Also complex Ph3SnC1L(L = p-EtO.C6H4) is prepared.
Resumo:
A thorough investigation of the recommended colorimetric method for the determination of malathion (an organophosphorus pesticide) has led to the identification of the major cause of all the problems with which the method suffers. The method, which involves the extraction of the copper (II) complex or the hydrolysis product of malathion from aqueous solution into immiscible organic solvents, has many drawbacks. For example, the colour of the organic extract fades very quickly and a slight increase in the contact time of the hydrolysis product and the copper reagent within the aqueous solution, results in a decrease in the ab-solute absorbance. Also, the presence of any reducing agents can be a significant source of error. In the present work, it has been shown that the basic cause of all these problems is the ability of copper (II) ion to be reduced to copper (I) ion. It has further been shown that these problems can be resolved by re-placing copper (II) by bismuth (III). This has led to the development of a modified colorimetric method for the determination. of malathion, which has distinct advantages over all other existing methods in terms of reagents required, ease in application, avoidance of interferences and stability of colour for extended periods of time. The modified colorimetric method described above has been further improved by making use of a ligand exchange reaction involving dithizone. The resulting final organic extract in this case is bright orange in colour, the absorbance of which can be measured even with simple photometers. The usefulness of the modified colorimetric method has been demonstrated by determining malathion in technical products, and in aqueous solution containing the compound down to sub ppm levels. The scope and applicability of atomic absorption spectrophotometry has been extended by demonstrating for the first time that the technique can be used for the indirect determination of malathion. Almost all of the work described above has been accepted for publication by international journals and considerable interest in the work has been shown by chemists working in the field of pesticide analysis and research.
Resumo:
[Cu(hyetrz)3](CF3SO3)2·H2O [hyetrz = 4-(2′-hydroxyethyl)-1,2,4-triazole] represents the first structurally characterised ferromagnetically coupled CuII chain compound containing triple N1,N2-1,2,4-triazole bridges. catena-[μ-Tris{4-(2′-hydroxyethyl)-1,2,4-triazole-N1,N2}copper(II)] bis(trifluoromethanesulfonate) hydrate (C14H23F6S2O10CuN9) crystallises in the triclinic space group Pl, a = 13.54(3), b = 14.37(3), c = 15.61(4) Å, α = 95.9(1), β = 104.9(1), γ = 106.5(1)°, V = 2763(11) Å3, Z = 4 (CuII units). The CuII ions are linked by triple N1,N2-1,2,4-triazole bridges yielding an alternating chain with Cu1−Cu2 = 3.8842(4) Å and Cu2−Cu3 = 3.9354(4) Å. Analysis of the magnetic data according to a high-temperature series expansion gives a J value of +1.45(3) cm−1. The nature and the magnitude of the ferromagnetic exchange have been discussed on the basis of the structural features. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
One the most interesting features of ocean sedimentation is the manganese formations on the surface of the ocean floor in some areas. These are especially widespread in the Pacific Ocean as concretions, grains, and crusts on rock fragments and bedrock outcrops. Iron-manganese concretions are the most abundant as they completely cover about 10% of the bottom of the Pacific Ocean where there are ore concentrations. The concretions occupy from 20-50% of the bottom and up to 80-90% on separate submarine rises. Such concretions are found in different types of bottom deposits, from abyssal red clays to terrigenous muds, but they occur most widely in red clays and quite often in carbonate muds. Their shape and their dimensions are very diverse and change from place to place, from station to station, varying from 0.5-20 cm. They may be oval, globular, reniform, or slaggy and often they are fiat or isometric concretions of an indefinite shape. The concretions generally have nuclei of pumice, basalt fragments, clayey and tuffaceous material, sharks' teeth, whale ossicles, and fossil sponges. Most concretions have concentric layers, combined with dendritic ramifications of iron and manganese oxides.
Resumo:
C. W. Gümbel received nodules from J. Murray which were collected at a depth of 2740 fathoms, between Japan and the Sandwich Islands, by the "Challenger" Expedition. They were either round or long in shape, with a dull, dirty-brown coloured surface, and enclosed fragments of pumice-stone, and more rarely teeth of sharks or fragments of mussels. They were analysed by A. Schwager.
Resumo:
During the "Challenger" Deep-Sea Exploring Expedition a great many peculiar-looking manganese nodules or concretions were dredged from the floor of the ocean at great depths, chiefly in the Red Clay areas of the Pacific. In the present paper we propose to point out the distribution of the oxides of manganese in the geological series of rocks, in fresh and sea water, and in marine deposits, with special reference to our explorations in the lochs of the west of Scotland; to give an account of investigations undertaken to ascertain the source of the manganese present in marine deposits in the form of the higher oxides, and thereafter to discuss the various views that have been advanced to explain the formation and distribution of manganese concretions in marine deposits in general.
Resumo:
Todorokite is a very abundant manganese oxide mineral in many deposits in Cuba and has been noted from other localities. Six new analyses are givenl they lead to the approximate formula (Na, Ca, K, Mn+2)(Mn+4, Mn+2, Mg)6O12.3H2O. Electron diffraction data show the mineral to be orthorhombic, or monoclinic with beta near 90°. The x-ray powder pattern is indexed on a cell with a=0.75A, b=2.849A, c=9.59A, beta=90°. A differential thermal analysis curve is given.
Resumo:
Chemical analyses are presented for two Cretaceous clays from Noil Tobee, Timor. Mineralogical examination has shown that they consist principally of quartz, feldspar, illite and chlorite, together with minor amounts of montmorillonite. Both chemically and mineralogically the clays are very similar to the recent argillaceous deep-sea sediments of the Pacific and Indian Oceans, which confirms Molengraaff's theory (1921) that they are of deep-sea origin. Further confirmation of this theory is provided by comparison of the composition of micromanganese nodules, separated from one of these clays, with that of manganese nodules from the Pacific Ocean.
Resumo:
Chemical, x-ray and other data are given for todorokite, (Mn, Mg, Ca, Ba, Na, K)2.Mn5O12.3H2O, from Charco Redondo, Cuba, Farragudo, Portugal, and Hüttenberg, Austria. Additional localities at Romanèche, France, Saipan Island, Bahia, Brazil and Sterling Hill, New Jersey, are noted. Delatorreite of Simon and Straczek (1958) is identical with todorokite.
Resumo:
The program of my PhD studies has been dealing with the investigation of the research outcomes that may result from the use of luminescent Iridium(III) cyclometalated complexes in the field of polymer science. In particular, my activity has been focused on exploring two main applicative contexts, i.e. Ir(III) complexes for preparing polymers and in combination with polymers. In the first part, a new set of luminescent Ir(III) complexes was exploited as photocatalysts for light-assisted atom transfer radical polymerization of methyl methacrylate. The decoration of both cyclometalated and ancillary ligands with sp3 hybridized nitrogen substituents together with the use of specific counterions, imparted suitable photophysical and redox properties for an efficient photocatalyzed process. The second part has been focused on the employment of Ir(III) tetrazole complexes as phosphorescent dyes in polymeric materials. Colourless luminescent solar concentrators were prepared blending two Ir(III) cyclometalates with acrylate polymers. Their performances were investigated, leading to promising outcomes comparable, or superior, to those obtained from colourless LSCs based on organic fluorophores. As a complementary approach, Ir(III) complexes were covalently linked to polymers in the side chain, to obtain a new class of metallopolymers. To this extent, a bifunctional tetrazolate molecule, equipped with a coordination site and a polymerizable unit, was designed. The photophysical properties of the resultant luminescent polymeric films were discussed. In the end, an additional project involving both polymers and metal compounds was carried out during my experience as a visiting PhD student at Humboldt – University of Berlin. Polystyrene and polyethylene glycol -based ion-exchange resins were functionalized with peptides through a ligation pathway, for the selective chelation of Copper(II) in aqueous solutions. The coordinating capability of the materials towards Cu2+ ions was tested by ICP-MS analysis. The resins strategically modified with ion-selective peptides, may be exploited in the preparation of water-processing devices.