965 resultados para CONVERTING-ENZYME-INHIBITOR
Resumo:
Members of the tumor necrosis factor receptor (TNFR) superfamily have an important role in the induction of cellular signals resulting in cell growth, differentiation and death. TNFR-1 recruits and assembles a signaling complex containing a number of death domain (DD)-containing proteins, including the adaptor protein TRADD and the serine/threonine kinase RIP, which mediates TNF-induced NF-kappa B activation. RIP also recruits caspase-2 to the TNFR-1 signaling complex via the adaptor protein RAIDD, which contains a DD and a caspase-recruiting domain (CARD). Here, we have identified a RIP-like kinase, termed CARDIAK (for CARD-containing interleukin (IL)-1 beta converting enzyme (ICE) associated kinase), which contains a serine/threonine kinase domain and a carboxy-terminal CARD. Overexpression of CARDIAK induced the activation of both NF-kappa B and Jun N-terminal kinase (JNK). CARDIAK interacted with the TNFR-associated factors TRAF-1 and TRAF-2, and a dominant-negative form of TRAF-2 inhibited CARDIAK-induced NF-kappa B activation. Interestingly, CARDIAK specifically interacted with the CARD of caspase-1 (previously known as ICE), and this interaction correlated with the processing of pro-caspase-1 and the formation of the active p20 subunit of caspase-1. Together, these data suggest that CARDIAK may be involved in NF-kappa B/JNK signaling and in the generation of the proinflammatory cytokine IL-1 beta through activation of caspase-1.
Resumo:
AIM: To review the various pharmacological approaches currently proposed for the treatment of hypertension. RESULTS: With the evolution of pharmacological treatment of hypertension, various classes of agent (diuretics, beta-blockers, angiotensin converting enzyme inhibitors, calcium antagonists and alpha 1-blockers) have become available for the initiation of antihypertensive therapy. As monotherapy, each type of agent will normalize blood pressure in about half of all hypertensive patients. Replacing one drug with another that acts through a different mechanism improves the probability of controlling blood pressure. Another way to increase the number of responders is to increase the dose; however, this often results in more side effects. A preferable way of improving efficacy is to combine low doses of drugs that have different impacts on the cardiovascular system, thus opposing the compensatory responses that tend to limit the blood pressure drop. CONCLUSION: Low-dose drug combinations are generally well tolerated and the treatment of hypertension can be simplified by using fixed-dose combinations. These combinations have the potential to become a valuable alternative in the initiation of antihypertensive therapy.
Resumo:
The treatment of essential hypertension is based essentially on the prescription of four major classes of antihypertensive drugs, i.e. blockers of the renin-angiotensin system, calcium channel blockers, diuretics and beta-blockers. In recent years, very few new drug therapies of hypertension have become available. Therefore, it is crucial for physicians to optimize their antihypertensive therapies with the drugs available on the market. In each of the classes of antihypertensive drugs, questions have recently been raised: are angiotensin-converting enzyme (ACE) inhibitors superior to angiotensin II receptor blockers (ARB)? Is it possible to reduce the incidence of peripheral oedema with calcium antagonists? Is hydrochlorothiazide really the good diuretic to use in combination therapies? The purpose of this review is to discuss these various questions in the light of the most recent clinical studies and meta-analyses. These latter suggest that ACE inhibitors and ARB are equivalent except for a better tolerability profile of ARB. Third generation calcium channel blockers enable to reduce the incidence of peripheral oedema and chlorthalidone is certainly more effective than hydrochlorothiazide in preventing cardiovascular events in hypertension. At last, studies suggest that drug adherence and long-term persistence under therapy is one of the major issues in the actual management of essential hypertension.
Resumo:
Losartan is an orally active angiotensin II antangonist that selectively blocks effects mediated by the stimulation of the AT1 subtype of the angiotensin II receptor. This agent, at doses of 50-150mg/day, is as effective at lowering blood pressure as chronic angiotensin converting enzyme (ACE) inhibitors. Losartan is generally well tolerated and has an incidence of adverse effects very similar, in double-blind controlled trials, to that of placebo. It does not cause coughing, the most common side-effect of the ACE inhibitors, most probably because angiotensin II antagonism has no impact on ACE, an enzyme known to process bradykinin and other cough-inducing peptides. Losartan is a promising antihypertensive agent with the potential to become a first-line option for the treatment of patients with high blood pressure.
Resumo:
To the Editor: The value of angiotensin-converting– enzyme (ACE) inhibitors, beta-blockers, and spironolactone has been well established by the results of numerous clinical trials. About 70 percent of the patients described by Rose et al. were treated with ACE inhibitors or angiotensin II–receptor antagonists; 35 to 40 percent received spironolactone, and only about 20 percent received beta-blockers. Thus, this population cannot have been considered to be optimally treated from the point of view of medical therapy.
Resumo:
Graft vasculopathy is an accelerated form of coronary artery disease that occurs in transplanted hearts. Despite major advances in immunosuppression, the prevalence of the disease has remained substantially unchanged during the last two decades. According to the 'response to injury' paradigm, graft vasculopathy is the result of a continuous inflammatory response to tissue injury initiated by both alloantigen-dependent and independent stress responses. Experimental evidence suggests that these responses may become self-sustaining, as allograft re-transplantation into the donor strain at a later stage fails to prevent disease progression. Histological evidence of endothelitis and arteritis, in association with intima fibrosis and atherosclerosis, reflects the central role of alloimmunity and inflammation in the development of arterial lesions. Experimental results in gene-targeted mouse models indicate that cellular and humoral immune responses are both involved in the pathogenesis of graft vasculopathy. Circulating antibodies against donor endothelium are found in a significant number of patients, but their pathogenic role is still controversial. Alloantigen-independent factors include donor-transmitted coronary artery disease, surgical trauma, ischaemia-reperfusion injury, viral infections, hyperlipidaemia, hypertension, and glucose intolerance. Recent therapeutic advances include the use of novel immunosuppressive agents such as sirolimus (rapamycin), HMG-CoA reductase inhibitors, calcium channel blockers, and angiotensin converting enzyme inhibitors. Optimal treatment of cardiovascular risk factors remains of paramount importance.
Resumo:
Alpha-ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and alpha-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the alpha-ketoglutarate-dependent dioxygenases and share the specific motif HXDX(24)TX(131)HX(10)R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 microM for (R)-mecoprop, 164 microM for (R)-dichlorprop, and 3 microM for alpha-ketoglutarate for RdpA and 132 microM for (S)-mecoprop, 495 microM for (S)-dichlorprop, and 20 microM for alpha-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 microM for SdpA and >230 microM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace alpha-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAalpha-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.
Resumo:
The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.
Resumo:
Angiotensin II is a potent arterial vasoconstrictor and induces hypertension. Angiotensin II also exerts a trophic effect on cardiomyocytes in vitro. The goals of the present study were to document an in vivo increase in cardiac angiotensins in the absence of elevated plasma levels or hypertension and to investigate prevention or regression of ventricular hypertrophy by renin-angiotensin system blockade. We demonstrate that high cardiac angiotensin II is directly responsible for right and left ventricular hypertrophy. We used transgenic mice overexpressing angiotensinogen in cardiomyocytes characterized by cardiac hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent or normalize ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue angiotensin II despite increased plasma levels. This suggests that angiotensin II may be protected from metabolization by binding to its receptor. Blocking of the angiotensin II type 1 receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may prevent remodeling and account for the beneficial effects of angiotensin antagonists.
Resumo:
Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.
Resumo:
Blockade of the renin-angiotensin-aldosterone cascade is now recognised as a very effective approach to treat hypertensive, heart failure and high cardiovascular risk patients and to retard the development of renal failure. The purpose of this review is to discuss the state of development of currently available drugs blocking the renin-angiotensin system, such as angiotensin converting enzyme (ACE) inhibitors, renin inhibitors and angiotensin II receptor antagonists, with a special emphasis on the results of the most recent trials conducted with AT(2) receptor antagonists in heart failure and Type 2 diabetes. In addition, the future perspectives of drugs with dual mechanisms of action, such as NEP/ACE inhibitors, also named vasopeptidase inhibitors, are presented.
Resumo:
Objective This study assessed pharmacological treatment adherence using the Morisky-Green Test and identified related variables. Method A longitudinal and retrospective study examined 283 patients with hypertension (62.5% women, 73.4 [10.9] years old) who were being monitored by a chronic disease management program for 17 months between 2011 and 2012. Nurses performed all the actions of the program, which consisted of advice via telephone and periodic home visits based on the risk stratification of the patients. Results A significant increase in treatment adherence (25.1% vs. 85.5%) and a decrease in blood pressure were observed (p<0.05). Patients with hypertension and chronic renal failure as well as those treated using angiotensin-converting enzyme inhibitors were the most adherent (p<0.05). Patients with hypertension who received angiotensin receptor blockers were less adherent (p<0.05). Conclusions Strategies such as nurse-performed chronic disease management can increase adherence to anti-hypertensive treatment and therefore contribute to the control of blood pressure, minimizing the morbidity profiles of patients with hypertension.
Resumo:
OBJECTIVE To evaluate the effect of using antihypertensive classes of drugs of the calcium channel antagonists and inhibitors of angiotensin-converting enzyme in plasma concentrations of hydrogen sulfide and nitric oxide in patients with hypertension. METHODS Cross-sectional study with quantitative approach conducted with hypertensive patients in use of antihypertensive classes of drugs: angiotensin-converting enzyme inhibitors or calcium channel antagonists. RESULTS It was found that the concentration of plasma nitric oxide was significantly higher in hypertensive patients that were in use of angiotensin-converting enzyme inhibitors (p<0.03) and the hydrogen sulphide concentration was significantly higher in hypertensive plasma in use of calcium channel antagonists (p<0.002). CONCLUSION The findings suggest that these medications have as additional action mechanism the improvement of endothelial dysfunction by elevate plasma levels of vasodilatory substances.
Resumo:
OBJECTIVES: We developed a population model that describes the ocular penetration and pharmacokinetics of penciclovir in human aqueous humour and plasma after oral administration of famciclovir. METHODS: Fifty-three patients undergoing cataract surgery received a single oral dose of 500 mg of famciclovir prior to surgery. Concentrations of penciclovir in both plasma and aqueous humour were measured by HPLC with fluorescence detection. Concentrations in plasma and aqueous humour were fitted using a two-compartment model (NONMEM software). Inter-individual and intra-individual variabilities were quantified and the influence of demographics and physiopathological and environmental variables on penciclovir pharmacokinetics was explored. RESULTS: Drug concentrations were fitted using a two-compartment, open model with first-order transfer rates between plasma and aqueous humour compartments. Among tested covariates, creatinine clearance, co-intake of angiotensin-converting enzyme inhibitors and body weight significantly influenced penciclovir pharmacokinetics. Plasma clearance was 22.8 ± 9.1 L/h and clearance from the aqueous humour was 8.2 × 10(-5) L/h. AUCs were 25.4 ± 10.2 and 6.6 ± 1.8 μg · h/mL in plasma and aqueous humour, respectively, yielding a penetration ratio of 0.28 ± 0.06. Simulated concentrations in the aqueous humour after administration of 500 mg of famciclovir three times daily were in the range of values required for 50% growth inhibition of non-resistant strains of the herpes zoster virus family. CONCLUSIONS: Plasma and aqueous penciclovir concentrations showed significant variability that could only be partially explained by renal function, body weight and comedication. Concentrations in the aqueous humour were much lower than in plasma, suggesting that factors in the blood-aqueous humour barrier might prevent its ocular penetration or that redistribution occurs in other ocular compartments.