974 resultados para CO2 emission reduction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological features of some areas of the Tropical Atlantic (stratigraphy, tectonic structure, lithology, distribution of ore components in bottom sediments, petrography of bedrocks, etc.) are under consideration in the book. Regularities of concentration of trace elements in iron-manganese nodules, features of these nodules in bottom sediments, distribution of phosphorite nodules and other phosphorites have been studied. Much attention is paid to rocks of the ocean crust. A wide range of mineralization represented by magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals has been found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbial oxidation of methane controls the emission of the greenhouse gas methane from the ocean floor. However, some seabed structures such as mud volcanoes have leaky microbial methane filters and can be important sources of methane. We investigated the disturbance and recovery of a methanotrophic mud volcano microbiome (Håkon Mosby mud volcano, 1250 m water depth), to assess time scales of community succession and function in the natural deep-sea environment. We analyzed 10 surface and 5 subsurface sediment samples across HMMV mud flows from most recently discharged subsurface muds towards old consolidated muds as well as one reference site (REF) located approximately 0.5 km outside of the HMMV. Surface samples were obtained in 2003, 2009 and 2010. The surface of the new mud flows at the geographical center was sampled in 2009 and 2010. Around 100 m south of the center, we sampled more consolidated aged muds in 2003 and 2010. Old mud flows were sampled around 300 m southeast and 100 m north of the geographical center in 2003, 2009 and 2010. Surface sediment samples (0-20 cm) were recovered either by TV-guided Multicorer or by push cores using the remotely operated vehicle Quest (Marum, University Bremen). Subsurface sediments of all zones (>2 m below sea floor) were obtained in 2003 by gravity corer. After recovery, sediments were immediately subsampled in a refrigerated container (0°C) and further processed for biogeochemical analyses or preserved at -20°C for later DNA analyses. Our study show that freshly erupted muds hosted heterotrophic deep subsurface communities, which were replaced by surface communities within a few years of exposure. Aerobic methanotrophy was established at the top surface layer within less than a year, followed by anaerobic methanotrophy, sulfate reduction and finally thiotrophy. Our data indicate that it takes decades in cold environments before efficient methanotrophic communities establish to control methane emission. The observed succession provides insights to the response time of complex deep-sea communities to seafloor disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising levels of atmospheric CO2 lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO2 levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO2 (PCO2) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric PCO2 (400 µatm, normocapnia) or PCO2 projected by moderate IPCC scenarios for the year 2100 (700-800 µatm, hypercapnia). Exposure of the juvenile oysters to elevated PCO2 and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and PCO2, suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high PCO2. Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated PCO2 and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements of partial pressure of carbon dioxide (pCO2), using a ProOceanus CO2-Pro instrument mounted on the flowthrough system. This automatic sensor is fitted with an equilibrator made of gas permeable silicone membrane and an internal detection loop with a non-dispersive infrared detector of PPSystems SBA-4 CO2 analyzer. A zero-CO2 baseline is provided for the subsequent measurements circulating the internal gas through a CO2 absorption chamber containing soda lime or Ascarite. The frequency of this automatic zero point calibration was set to be 24 hours. All data recorded during zeroing processes were discarded with the 15-minute data after each calibration. The output of CO2-Pro is the mole fraction of CO2 in the measured water and the pCO2 is obtained using the measured total pressure of the internal wet gas. The fugacity of CO2 (fCO2) in the surface seawater, whose difference with the atmospheric CO2 fugacity is proportional to the air-sea CO2 fluxes, is obtained by correcting the pCO2 for non-ideal CO2 gas concentration according to Weiss (1974). The fCO2 computed using CO2-Pro measurements was corrected to the sea surface condition by considering the temperature effect on fCO2 (Takahashi et al., 1993). The surface seawater observations that were initially estimated with a 15 seconds frequency were averaged every 5-min cycle. The performance of CO2-Pro was adjusted by comparing the sensor outputs against the thermodynamic carbonate calculation of pCO2 using the carbonic system constants of Millero et al. (2006) from the determinations of total inorganic carbon (CT ) and total alkalinity (AT ) in discrete samples collected at sea surface. AT was determined using an automated open cell potentiometric titration (Haraldsson et al. 1997). CT was determined with an automated coulometric titration (Johnson et al. 1985; 1987), using the MIDSOMMA system (Mintrop, 2005). fCO2 data are flagged according to the WOCE guidelines following Pierrot et al. (2009) identifying recommended values and questionable measurements giving additional information about the reasons of the questionability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased atmospheric carbon dioxide leads to ocean acidification and carbon dioxide (CO2) enrichment of seawater. Given the important ecological functions of seagrass meadows, understanding their responses to CO2 will be critical for the management of coastal ecosystems. This study examined the physiological responses of three tropical seagrasses to a range of seawater pCO2 levels in a laboratory. Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were exposed to four different pCO2 treatments (442-1204 µatm) for 2 weeks, approximating the range of end-of-century emission scenarios. Photosynthetic responses were quantified using optode-based oxygen flux measurements. Across all three species, net productivity and energetic surplus (PG:R) significantly increased with a rise in pCO2 (linear models, P < 0.05). Photosynthesis-irradiance curve-derived photosynthetic parameters-maximum photosynthetic rates (P max) and efficiency (alpha) also increased as pCO2 increased (linear models, P < 0.05). The response for productivity measures was similar across species, i.e. similar slopes in linear models. A decrease in compensation light requirement (Ec) with increasing pCO2 was evident in C. serrulata and H. uninervis, but not in T. hemprichii. Despite higher productivity with pCO2 enrichment, leaf growth rates in C. serrulata did not increase, while those in H. uninervis and T. hemprichii significantly increased with increasing pCO2 levels. While seagrasses can be carbon-limited and productivity can respond positively to CO2 enrichment, varying carbon allocation strategies amongst species suggest differential growth response between species. Thus, future increase in seawater CO2 concentration may lead to an overall increase in seagrass biomass and productivity, as well as community changes in seagrass meadows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to understand how marine calcifying organisms may acclimatize to ocean acidification to assess their survival over the coming century. We cultured the cold water coralline algae, Lithothamnion glaciale, under elevated pCO2 (408, 566, 770, and 1024 µatm) for 10 months. The results show that the cell (inter and intra) wall thickness is maintained, but there is a reduction in growth rate (linear extension) at all elevated pCO2. Furthermore a decrease in Mg content at the two highest CO2 treatments was observed. Comparison between our data and that at 3 months from the same long-term experiment shows that the acclimation differs over time since at 3 months, the samples cultured under high pCO2 showed a reduction in the cell (inter and intra) wall thickness but a maintained growth rate. This suggests a reallocation of the energy budget between 3 and 10 months and highlights the high degree plasticity that is present. This might provide a selective advantage in future high CO2 world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.