999 resultados para CO2 GEOLOGICAL STORAGE
Resumo:
Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.
Resumo:
The integration of large amounts of wind energy in power systems raises important operation issues such as the balance between power demand and generation. The pumped storage hydro (PSH) units are seen as one solution for this issue, avoiding the need for wind power curtailments. However, the behavior of a PSH unit might differ considerably when it operates in a liberalized market with some degree of market power. In this regard, a new approach for the optimal daily scheduling of a PSH unit in the day-ahead electricity market was developed and presented in this paper, in which the market power is modeled by a residual inverse demand function with a variable elasticity. The results obtained show that increasing degrees of market power of the PSH unit correspond to decreasing levels of storage and, therefore, the capacity to integrate wind power is considerably reduced under these circumstances.
Resumo:
The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
The economic development of a region depends on the speed that people and goods can travel. The reduction of people and goods travel time can be achieved by planning smooth road layouts, which are obtained by crossing natural obstacles such as hills, by tunneling at great depths, and allowing the reduction of the road alignment length. The stress state in rock masses at such depths, either because of the overburden or due to the tectonic conditions of the rock mass induces high convergences of the tunnel walls. These high convergence values are incompatible with the supports structural performance installed in the excavation stabilization. In this article it is intended to evaluate and analyze some of the solutions already implemented in several similar geological and geotechnical situations, in order to establish a methodological principle for the design of the tunnels included in a highway section under construction in the region influenced by the Himalayas, in the state of Himachal Pradesh (India) and referenced by "four laning of Kiratpur to Ner Chowk section".
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Bioenergia
Resumo:
A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
CO2 capture from gaseous effluents is one of the great challenges faced by chemical and environmental engineers, as the increase in CO2 levels in the Earth atmosphere might be responsible for dramatic climate changes. From the existing capture technologies, the only proven and mature technology is chemical absorption using aqueous amine solutions. However, bearing in mind that this process is somewhat expensive, it is important to choose the most efficient and, at the same time, the least expensive solvents. For this purpose, a pilot test facility was assembled and includes an absorption column, as well as a stripping column, a heat exchanger between the two columns, a reboiler for the stripping column, pumping systems, surge tanks and all necessary instrumentation and control systems. Some different aquous amine solutions were tested on this facility and it was found that, from a set of six tested amines, diethanol amine is the one that turned out to be the most economical choice, as it showed a higher CO2 loading capacity (0.982 mol of CO2 per mol of amine) and the lowest price per litre (25.70 ¤/L), even when compared with monoethanolamine, the benchmark solvent, exhibiting a price per litre of 30.50 ¤/L.
Resumo:
Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Accumulation of microcystin-LR (MC-LR) in edible aquatic organisms, particularly in bivalves, is widely documented. In this study, the effects of food storage and processing conditions on the free MC-LR concentration in clams (Corbicula fluminea) fed MC-LR-producing Microcystisaeruginosa (1 × 105 cell/mL) for four days, and the bioaccessibility of MC-LR after in vitro proteolytic digestion were investigated. The concentration of free MC-LR in clams decreased sequentially over the time with unrefrigerated and refrigerated storage and increased with freezing storage. Overall, cooking for short periods of time resulted in a significantly higher concentration (P < 0.05) of free MC-LR in clams, specifically microwave (MW) radiation treatment for 0.5 (57.5%) and 1 min (59%) and boiling treatment for 5 (163.4%) and 15 min (213.4%). The bioaccessibility of MC-LR after proteolytic digestion was reduced to 83%, potentially because of MC-LR degradation by pancreatic enzymes. Our results suggest that risk assessment based on direct comparison between MC-LR concentrations determined in raw food products and the tolerable daily intake (TDI) value set for the MC-LR might not be representative of true human exposure.
Resumo:
In-network storage of data in wireless sensor networks contributes to reduce the communications inside the network and to favor data aggregation. In this paper, we consider the use of n out of m codes and data dispersal in combination to in-network storage. In particular, we provide an abstract model of in-network storage to show how n out of m codes can be used, and we discuss how this can be achieved in five cases of study. We also define a model aimed at evaluating the probability of correct data encoding and decoding, we exploit this model and simulations to show how, in the cases of study, the parameters of the n out of m codes and the network should be configured in order to achieve correct data coding and decoding with high probability.
Resumo:
Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.
Resumo:
A manutenção de uma adequada pressão de perfusão cerebral é essencial para a prevenção de isquémia cerebral. Flutuações fisiológicas da pressão arterial a montante são compensadas localmente pela autoregulação cerebral. A reserva vascular cerebral necessária à eficácia desta autoregulação pode ser determinada medindo as modificações no fluxo sanguíneo cerebral em resposta a estímulos vasodilatadores. O Doppler Transcraneano tem sido usado para a determinação da velocidade do fluxo sanguíneo cerebral modificada por esses estímulos. Descrevemos um método de análise da capacidade de reserva da circulação cerebral pelo Doppler Transcraneano sob efeito do CO2. Este método pode ser útil para a caracterização das alterações hemodinâmicas que ocorrem em vários tipos de doença isquémica cerebral.
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica