983 resultados para CHAIN-REACTION ASSAY
Resumo:
The present study was performed in an area endemic for Brazilian spotted fever (BSF) in Juiz de Fora, state of Minas Gerais, Brazil, during the years 2007 and 2008, when fatal cases of BSF (caused by Rickettsia rickettsii) were reported. Adult ticks (Acari: Ixodidae) identified as Rhipicephalus sanguineus (Latreille) and Amblyomma cajennense (Fabricius) were collected from dogs and horses, respectively, and tested by polymerase chain reaction (PCR). Overall, 13.1% of the Rh. sanguineus ticks and none of the A. cajennense were found to be infected with R. rickettsii. Two isolates of R. rickettsii were successfully established in Vero cell culture from two Rh. sanguineus ticks. An indirect immunofluorescence assay (IFA) using R. rickettsii antigens detected blood serological reaction to R. rickettsii in 67.9% (53/78) of dogs and 41.0% (16/39) of horses living in the study area. Larval offspring from two Rh. sanguineus engorged females, naturally infected by R. rickettsii, were reared to adult stage in the laboratory. All active stages (larvae, nymphs, adults) remained 100% infected by R. rickettsii, which was efficiently transmitted to naive rabbits. Overall, the results of the present study indicate a potential risk for transmission of R. rickettsii to humans by Rh. sanguineus, an occurrence yet to be documented in Brazil.
Resumo:
The aim of this study was to understand the current epidemiology of rickettsial diseases in two rickettsial-endemic regions in Brazil. In the municipalities of Pingo D`Agua and Santa Cruz do Escalvado, among serum samples obtained from horses and dogs, reactivity by immunofluorescent assay against spotted fever group rickettsiae was verified. In some serum samples from opossums (Didelphis aurita) captured in Santa Cruz do Escalvado, serologic response against rickettsiae was also verified. Polymerase chain reaction identified rickettsiae only in ticks and fleas obtained in Santa Cruz do Escalvado. Rickettsiae in samples had 100% sequence homology with Rickettsia fells. These results highlight the importance of marsupials in maintenance of the sylvatic cycle of rickettsial disease and potential integration with the domestic cycle. Our data also support the importance of horses and dogs as sentinels in monitoring circulation of rickettsiae in an urban area.
Resumo:
Neonatal calf diarrhea is a multi-etiology syndrome of cattle and direct detection of the two major agents of the syndrome, group A rotavirus and Bovine coronavirus (BCoV) is hampered by their fastidious growth in cell culture. This study aimed at developing a multiplex semi-nested RT-PCR for simultaneous detection of BCoV (N gene) and group A rotavirus (VP1 gene) with the addition of an internal control (mRNA ND5). The assay was tested in 75 bovine feces samples tested previously for rotavirus using PAGE and for BCoV using nested RT-PCR targeted to RdRp gene. Agreement with reference tests was optimal for BCoV (kappa = 0.833) and substantial for rotavirus detection (kappa = 0.648). the internal control, ND5 mRNA, was detected successfully in all reactions. Results demonstrated that this multiplex semi-nested RT-PCR was effective in the detection of BCoV and rotavirus, with high sensitivity and specificity for simultaneous detection of both viruses at a lower cost, providing an important tool for studies on the etiology of diarrhea in cattle. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Spotted fever is a disease caused by bacteria from the genus Rickettsia of the spotted fever group (SFG). Rickettsia rickettsii is likely the main agent of Brazilian spotted fever (BSF). With the objective of gathering information on the circulation of SFG rickettsiae in Londrina, Parana state, ticks from dogs and horses and also blood from dogs, horses and humans were collected in a neighbourhood of the city which presented potential for circulation of rickettsiae between hosts and vectors. Amblyomma cajennense, Dermacentor nitens, and Rhipicephalus sanguineus ticks were subjected to Polymerase Chain Reaction targeting a fragment of the Rickettsia gltA gene. This specific gene encodes the enzyme citrate synthase of Rickettsia spp., and results on all ticks were negative. Human and animal sera were tested by Indirect Immunofluorescence Assay in which R. rickettsii and R. parkeri were used as antigens. Sera from 4.7% human, 2.7% canine and 38.5% equine were positive for R. rickettsii. For R. parkeri, 0.9% human, 2.7% canine and 11.5% equine samples were positive. All samples reactive to R. parkeri also reacted to R. rickettsii. An epidemiological questionnaire was applied, but there were no statistically significant results. Comparison of our serological results with previous studies in Brazil, among BSF endemic and non-endemic areas, indicates that there is no established rickettsial infection in the study area, a statement corroborated with our molecular analysis. Nonetheless, as humans of the present study are highly exposed to tick infestations, health education within the population is needed to obtain efficient tick control. Zoonoses and Public Health 416 (C) 2011 Blackwell Verlag GmbH . Zoonoses Public Health. 58 (2011) 416-423
Resumo:
Blood samples collected from 201 humans, 92 dogs, and 27 horses in the state of Espirito Santo, Brazil, were tested by polymerase chain reaction, indirect immunofluorescence assays, and indirect enzyme-linked immunosorbent assay for tick-borne diseases (rickettsiosis, ehrlichiosis, anaplasmosis, borreliosis, babesiosis). Our results indicated that the surveyed counties are endemic for spotted fever group rickettsiosis because sera from 70 (34.8%) humans, 7 (7.6%) dogs, and 7 (25.9%) horses were reactive to at least one of the six Rickettsia species tested. Although there was evidence of ehrlichiosis (Ehrlichia canis) and babesiosis (Babesia cams vogeli, Theileria equi) in domestic animals, no human was positive for babesiosis and only four individuals were serologically positive for E. canis. Borrelia burgdorferi-serologic reactive sera were rare among humans and horses, but encompassed 51% of the canine samples, suggesting that dogs and their ticks can be part of the epidemiological cycle of the causative agent of the Brazilian zoonosis, named Baggio-Yoshinari Syndrome.
Resumo:
Inflammatory cytokines contribute to periapical tissue destruction. Their activity is potentially regulated by suppressors of cytokine signaling (SOCS), which down-regulate signal transduction as part of an inhibitory feedback loop. We investigated the expression of the cytokines tumor necrosis factor alpha (TNF-alpha); interleukin (IL)-10 and RANKL; and SOCS-1, -2, and -3 by real-time polymerase chain reaction in 57 periapical granulomas and 38 healthy periapical tissues. Periapical granulomas exhibited significantly higher SOCS-1, -2, and -3, TNF-alpha, IL-10, and RANKL messenger RNA levels when compared with healthy controls. Significant positive correlations were found between SOCS1 and IL-10 and between SOCS3 and IL-10. Significant inverse correlations were observed between SOCS1 and TNF-alpha, SOCS1 and RANKL, and SOCS3 and TNF-alpha. Increased SOCS-1, -2, and -3 messenger RNA levels in periapical granulomas may be related to the downregulation of inflammatory cytokines in these lesions; therefore, SOCS molecules may play a role in the dynamics of periapical granulomas development. (J Endod 2008;34:1480-1484)
GP5+/6+ SYBR Green methodology for simultaneous screening and quantification of human papillomavirus
Resumo:
Background: Detection and quantification of human papillomavirus (HPV) may help in predicting the evolution of HPV infection and progression of associated lesions. Objectives: We propose a novel protocol using consensus primers GP5+/6+ in a SYBR Green quantitative real-time (Q-RT) polymerase chain reaction (PCR). The strategy permits screening for HPV infection and viral load quantification simultaneously. Study design: DNA from 153 archived cervical samples, previously tested for HPV detection by GP5+/6+ PCR and typed by EIA-RLB (enzyme immunoassay-reverse line blot) or sequence analysis, was analysed using SYBR Green Q-RT PCR. Melting temperature assay (T(m)) and cycle threshold (C(t)) were used to evaluate HPV positivity and viral load. The T(m) in the range of 77-82 degrees C was considered to be positive for HPV-DNA. HPV results generated through GP5+/6+ conventional PCR were considered the gold standard against which sensitivity and specificity of our assay were measured. Results: Out of 104 HPV positive samples, 100 (96.2%) were also determined as positive by SYBR Green Q-RT PCR; of the 49 HPV-negative samples, all were determined as negative. There was an excellent positivity agreement (K = 0.94) between the SYBR Green Q-RT and the previous methods employed. The specificity and sensitivity were 100% and 96.2%, respectively. Comparison of SYBR Green Q-RT and TaqMan oligo-probe technologies gave an excellent concordance (pc = 0.95) which validated the proposed strategy. Conclusions: We propose a sensitive and easy-to-perform technique for HPV screening and viral load quantification simultaneously. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.
Resumo:
Current methods to detect transduction efficiency during the routine use of integrating retroviral vectors in gene therapy applications may require the use of radioactivity and usually rely upon subjective determination of the results. We have developed two competitive quantitative assays that use an enzyme-linked, amplicon hybridization assay (ELAHA) to detect the products of PCR-amplified regions of transgene from cells transduced with Moloney murine leukemia virus vectors. The quantitative assays (PCR-ELAHA) proved to be simple, rapid, and sensitive, avoiding the need for Southern hybridization, complex histochemical stains, or often subjective and time-consuming tissue culture and immunofluorescence assays. The PCR-ELAHA systems can rapidly detect proviral DNA from any retroviral vector carrying the common selective and marker genes neomycin phosphotransferase and green fluorescent protein, and the methods described are equally applicable to other sequences of interest, providing a cheaper alternative to the evolving real-time PCR methods. The results revealed the number of copies of retrovector provirus present per stably transduced cell using vectors containing either one or both qPCR targets.
Resumo:
Seedborne peanut viruses pose important constraints to peanut production and safe movement of germ plasm. They also pose a risk of accidental introduction into previously disease-free regions. We have developed reverse transcription-polymerase chain reaction (RT-PCR) assays based on identical cycling parameters which identified peanut stripe, Peanut mottle, Peanut stunt, and Cucumber mosaic viruses through production of specific DNA fragments of 234 bp, 327 bp, 390 bp, and 133 bp, respectively. Assay sensitivity in the picogram range was achieved. The two potyviruses and two cucumoviruses could be differentiated using duplex RT-PCR assays. These assays should be useful for testing peanut leaves or seeds for virus identification in epidemiological studies, seed testing or in post-entry quarantine.
Resumo:
A semi-nested polymerase chain reaction (PCR) was evaluated for detection of Japanese encephalitis (JE) virus in infected mosquitoes stored under simulated northern Australian summer conditions. The effect of silica gel, thymol, and a combination of the two on RNA stability and virus viability in dead mosquitoes were also examined. While JE virus RNA was relatively stable in mosquitoes held for up to 14 days after death, viable virus was not detected after day 1. Thymol vapor inhibited fungal contamination. Detection of single mosquitoes infected with JE virus in large pools of mosquitoes was also investigated. Single laboratory-infected mosquitoes were detected in pools of less than or equal to200 mosquitoes and in pools diluted to 0.2/100 and 0.1/100 mosquitoes, using the semi-nested PCR. However, the ability to detect live virus decreased as pool size increased. The semi-nested PCR proved more expensive than virus isolation for pools of 100 mosquitoes. However, the semi-nested PCR was faster and more economical using larger pools. Results indicate that surveillance of JE virus in mosquitoes using the semi-nested PCR is an alternative to monitoring seroconversions in sentinel pigs.
Resumo:
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand. METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV 2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR) = 2.67, 95% CI = 1.59-4.47, p = 0.0171]. CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV 2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.
Resumo:
The aim of this study was to further investigate the mechanism of suppression of natural killer (NK) cell cytotoxic activity In peripheral blood following strenuous exercise. Blood was collected for analysis of NK cell concentration, cytotoxic activity, CD2 surface expression and perforin gene expression from runners (RUN, n = 6) and resting controls (CONTROL, n = 4) pre-exercise, 0, 1.5, 5, and 24 h following a 60-min treadmill run at 80% of VO2 peak. Natural killer cytotoxic activity, measured using a whole blood chromium release assay, fluctuated minimally in the CONTROL group and increased by 63% and decreased by 43% 0 and 1.5 h post-exercise, respectively, in the RUN group (group x time, P < 0.001). Lytic index (cytotoxic activity per cell) did not change. Perforin mRNA, measured using quantitative real-time polymerase chain reaction (ORT-PCR) decreased from pre- to post-exercise and remained decreased through 24 h, The decrease from pre- to 0 In post-exercise was seen predominately in the RUN group and was inversely correlated r = - 0.95) to pre-exercise perform mRNA. The NK cell surface expression of CD2 (lymphocyte function-associated antigen-2) was determined using fluorescent antibodies and flow cytometry, There was no change in the proportion of NK cells expressing CD2 or CD2 density, We conclude that (1) numerical redistribution accounted for most of the change in NK cytotoxic activity following a strenuous run, (2) decrease in perforin gene expression during the run was inversely related to pre-exercise levels but did not parallel changes in cytotoxic activity, and (3) CD2 surface expression was not affected by exercise.
Resumo:
Extended-spectrum beta-lactamases (ESBLs) are active against oxyimino cephalosporins and monobactams. Twenty-one Klebsiella pneumoniae isolates obtained between 1991 and 1995 at the Princess Alexandra Hospital in Brisbane, Australia, were subject to amplification and sequencing of the SHV beta-lactamase-encoding genes. Thirteen strains were phenotypically ESBL positive. Of these, six strains carried the bla(SHV-2a) gene and seven strains carried the bla(SHV-12) gene. Eight strains were phenotypically ESBL negative. Of these, seven strains carried the non-ESBL bla(SHV-11) gene and one strain carried the non-ESBL bla(SHV-1) gene. There was complete correspondence between the ESBL phenotype and the presence or absence of an ESBL-encoding gene(s). In addition, it was determined that of the 13 ESBL-positive strains, at least 4 carried copies of a non-ESBL-encoding gene in addition to the bla(SHV-2a) or bla(SHV12) gene. A minisequencing-based assay was developed to discriminate the different SHV classes. This technique, termed first-nucleotide change, involves the identification of the base added to a primer in a single-nucleotide extension reaction. The assay targeted polymorphisms at the first bases of codons 238 and 240 and reliably discriminated ESBL-positive strains from ESBL-negative strains and also distinguished strains carrying bla(SHV-2a) from strains carrying bla(SHV-12). In addition, this method was used to demonstrated an association between the relative copy numbers of bla(SHV) genes in individual strains and the levels of antibiotic resistance.
Resumo:
Lymphocyte proliferation and cytokine production were measured in groups of mice vaccinated (but not subsequently challenge infected) with recombinant forms of Schistosoma japonicum cathepsin D aspartic protease, rSjASP1 (expressed in bacteria; enzymatically inactive) and rSjASP2 (expressed in insect cells; enzymatically active). Both forms of the schistosome enzyme induced significant proliferation of splenocytes recovered from vaccinated mice, and expression of interferon (IFN)-gamma, interleukin (IL)-4 and IL-10 mRNA in these cells was detected using reverse transcriptase-polymerase chain reaction. Secretion of IFN-gamma, IL-4 and IL-10 by splenocytes from vaccinated mice was confirmed and quantified using enzyme-linked immunosorbent assay. IFN-gamma was the most abundant cytokine produced, followed by IL-4 and IL-10 in rank order. These findings indicated that vaccination of mice with the schistosome protease induces a mixed Th1/Th2 cytokine response, which may explain the modest level of protection after challenge infection in cathepsin d-vaccinated mice, reported previously.