412 resultados para CARBONATITE MELTS
Resumo:
The occurrence of hand grindstones at the Cogotas I archaeological sites is considered to be a common feature. Given that a distant-provenance raw material is frequently involved, determination of its source is a basic factor in the search for a better understanding of resource management and for any Political Economy approach. To progress in these directions an overall study should be planned, using selected grindstones with a view to covering diverse sub-zones of the Cogotas I dispersal area, especially because of its considerable distance from the granite basement source. Such a study may today includes diverse analytical procedures combining successive geographic, petrographic, mineralogical and geochemical criteria. To check the plausibility of the proposed methodology, a preliminary test has been carried out on two granite grindstones, obtained at the archaeological excavation at the Castronuño (Valladolid) Cogotian site, which is fifty km away from an inferred source area that was presumably located at Peñausende (Zamora). The result obtained validates the proposed operational process, yielding a generalizable knowledge to other similar situations.
Resumo:
Dans un contexte climatique rigoureux comme celui du Québec, l’interaction entre la charge et le climat a une grande influence sur la performance des structures de chaussées flexibles (Doré et Zubeck, 2009). Pendant le dégel printanier, avec la fonte de la glace, la chaussée s’affaiblit et cet affaiblissement la rend vulnérable à la sollicitation par le trafic lourd ce qui accélère divers phénomènes de dégradation, notamment l’endommagement par fatigue et l’orniérage structural (Farcette, 2010). Afin de minimiser les effets des charges lourdes sur une chaussée affaiblie lors du printemps, les administrations routières choisissent souvent de limiter les charges par essieu ou par véhicule lors du dégel. L’objectif de ce projet est de développer un outil d’aide pour la gestion des restrictions de charge en période de dégel en fonction des données recueillies par les stations de météo routière. Deux sections expérimentales composées des mêmes matériaux mais avec des épaisseurs d’enrobés bitumineux différentes situées au Site Expérimental Routier de l’Université Laval (SERUL) ont été utilisées pour ce projet. Pour bien interpréter le comportement des structures, des jauges de déformations verticales et horizontales, des jauges de contraintes, des jauges de teneur en eau et des thermistances ont été installées dans chaque couche. Pour solliciter mécaniquement la chaussée, un déflectomètre à masse tombante (FWD) a été utilisé. Les résultats obtenus ont permis de de bien comprendre les mécanismes d’affaiblissement de la chaussée durant la période de dégel. Ils ont aussi montré que l’application d’une période de restriction de charge pendant la période de dégel permettait d’avoir un gain sur la durée de vie de la chaussée, cette période de restriction est donc justifiée et efficace. Néanmoins, pour une meilleure gestion du réseau routier, de nouveaux critères pour mieux déterminer la période de restriction de charges sont proposés.
Resumo:
The mercury-indium phase diagram has been investigated over the whole composition range from -78°C to the melting point of indium, using thermal analysis, X-ray and superconductivity techniques. This is believed to be the first application of superconductivity measurements to phase diagram investigations. A compound, HgIn, of very limited range of composition, melts congruently at -19.3°C; and gives rise to eutectics at 61.5 at. % indium and -31°C, and at 34.7% indium and -37.2°C. The β phase extends from 2.5 to 19.1 % indium and has a maximum melting point of -14.2°C at 14.2% indium. It forms a peritectic or eutectic at a temperature indistinguishable from the melting point of pure mercury with a solid solution in mercury containing some, but less than 0.3%, indium. A transition from face-centred tetragonal to face-centred cubic in the indium-rich solid solutions at about 93% indium gives rise to a peritectic at 108°C. The solubility of mercury in this face-centred cubic phase falls from about 22% at-31°C to 13% at -78°C. © 1963.
Resumo:
CL imaging and U–Th–Pb data for a population of zircons from two of the Évora Massif granitoids (Ossa-Morena Zone, SW Iberia) show that both calc-alkaline granitoids have zircon populations dominated by grains with cores and rims either showing or not showing differences in Th/U ratio, and having ages in the range ca. 350–335 Ma (Early Carboniferous). Multistage crystallization of zircon is revealed in two main growth stages (ca. 344–342 Ma and ca. 336–335 Ma), well represented by morphologically complex zircons with cores and rims with different ages and different Th/U ratios that can be explained by: (1) crystallization from melts with different compositions (felsic peraluminous to felsic-intermediate metaluminous; 0.001 Th/U ratio < 0.5) and (2) transient temperature fluctuations in a system where anatectic felsic melts periodically underwent injection of more mafic magmas at higher temperatures. The two studied calc-alkaline granitoids do not include inherited zircons (pre-Carboniferous), probably because they were formed at the highest grade of metamorphism (T 837 °C; granulite facies) and/or because they were derived from inheritance-poor felsic and mafic rocks from a previous cycle, as suggested by the internal structures of zircon cores. These Variscan magmatic rocks with crystallization ages estimated at ca. 336–335 Ma are spatially and temporally related to high-temperature metamorphism, anatexis, processes of interaction between crustal- and mantle-derived magmas and intra-orogenic extension that acted in SW Iberia during the Early Carboniferous.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Geociências, Programa de Pós-Graduação em Geologia, 2015.
Resumo:
After the Congress, a six-day field trip, will be held through three southwestern provinces of Angola (Huíla, Namibe and Cunene), every day starting and ending in the city of Lubango, for overnight stay in Lubango, with the purpose to observe some of the main sites of geological interest in this zone of Angola. The itinerary of this field trip presents the geologic history of Southwestern Angola and its evolution in the scope of the Congo Craton, through a trip that begins in the first excursion days by the oldest geologic formations and phenomena until the recent geologic formations and phenomena on the last excursion days. On the first and second excursion days, September 5th and September 6th, the field trip will go along the Kunene Anorthosite Complex of Angola (KAC), to observe some petrographic features of the KAC that are important to understand the emplacement of this huge igneous massif of the early Kibarean age. These days of the field trip allow the observation of Earthen Construction, because this region of Cunene is privileged to appreciate a kind of Eco-construction, made of raw earth and in wattle and daub, built with ancient techniques, which constitute a real GeoHeritage. On September 7th, in the morning, the destination will be Tundavala, to visit Tundavala Gap, a huge escarpment of more than 1,000 m high cutted in Neo-Archean and Paleo-Proterozoic igneous rocks, the Ruins of Tundavala (quartzite blocks with sedimentary structures) and Tundavala Waterfalls on a quartzitic scarp. After lunch, the field trip continues towards Humpata plateau to observe the panoramic view over Lubango city from the Statue of Cristo Rei, then the outcrops of dolomitic limestones with stromatolites and dolerites and finally the Leba passage, a huge escarpment and one of the most spectacular parts of the Serra da Chela, traversed by a mountain road built in the early 70s of the last century, that can be observed from the belvedere of the Serra da Chela. On September 8th, the destination is the carbonatite complexes of Tchivira and Bonga, belonging to the Mesozoic alkaline massifs of ultrabasic rocks, a rift valley system that occurs during the Early Cretaceous. In this forth excursion day, due to the huge dimensions of these two carbonatite structures it will be visited, only, the Complex of Bonga, namely the outcrops of the northern part of the structure and secondary deposits on the boundary on the southern part of the of the Complex. The last two excursion days, September 9th and September 10th, are to observe the Cretaceous Basin of Namibe. On September 9th, the northern part of Namibe Basin will be visited to observe the volcanic basic rocks of Namibe as well as the interesting paleontological site of Bentiaba. On September 10th, the destination is the southern and more recent part of Namibe Basin, where on the Namib Desert, the exotic plant Welwitschia mirabilis can be observed, as well as Arco, an oasis in the desert. This last excursion day, ends up at the dunes of Tombwa near the mouth of Curoca river and the beautiful bay of Tombwa, where can be observed heavy minerals in their beach sands.
Resumo:
Convergent plate boundaries are sites of sustained chemical exchanges between the Earth’s surface and deep geochemical reservoirs, playing a major role in the global cycle of carbon and sulfur. However, carbon and sulfur recycling processes continue to be hotly debated. A critical gap in the knowledge of the whole subduction factory is given by the limited accessibility to the upper mantle residing above the subducting plate, the so-called mantle wedge. This thesis investigates the carbonate and sulfide metasomatism taking place during the whole metamorphic evolution of a mantle wedge involved in the Variscan continental collision. We integrate different detailed geochemical and petrological techniques to orogenic carbonated spinel and garnet peridotites from the Ulten Zone of the Eastern Italian Alps. Our data show that the Ulten Zone peridotite experienced multiple stages of addition and removal of carbon and sulfur throughout its metamorphic evolution, as follows: (1) The Variscan lithospheric mantle was initially depleted and sulfide-poor. It subsequently inherited a sulfur and carbon component during an early metasomatic stage, when hot, H2S-CO2-bearing melts leaving a subduction-modified source percolated the overlying spinel-facies peridotite in the mantle wedge; (2) Under peak eclogite-facies P-T conditions, pervasive carbonation and sulfidation occurred. Heterogeneous melt and fluid sources variably enriched in carbon, isotopically heavy sulfur and radiogenic Sr were involved; (3) Shortly after the attainment of peak-P conditions, peridotite bodies were incorporated in a tectonic mélange with the neighboring gneisses. Here, the Ulten Zone peridotite was exposed to channelized infiltration of hybridized C-O-H fluids that promoted the formation of veinlets of carbonates locally associated with sulfide grains. (4) Upon late retrogression, infiltration of serpentinizing fluids promoted C and S remobilization at shallow crustal levels.