955 resultados para C-terminus
Resumo:
Mutations in the whn gene are associated with the phenotype of congenital athymia and hairlessness in mouse and rat. The whn gene encodes a presumptive transcription factor with a DNA binding domain of the forkhead/ winged-helix class. Two previously described null alleles encode truncated whn proteins lacking the characteristic DNA binding domain. In the rat rnu allele described here, a nonsense mutation in exon 8 of the whn gene was identified. The truncated whnrnu protein contains the DNA binding domain but lacks the 175 C-terminal amino acids of the wild-type protein. To facilitate the identification of functionally important regions in this region, a whn homolog from the pufferfish Fugu rubripes was isolated. Comparison of derived protein sequences with the mouse whn gene revealed the presence of a conserved acidic protein domain in the C terminus, in addition to the highly conserved DNA binding domain. Using fusions with a heterologous DNA binding domain, a strong transcriptional activation domain was localized to the C-terminal cluster of acidic amino acids. As the whnrnu mutant protein lacks this domain, our results indicate that a transactivation function is essential for the activity of the whn transcription factor.
Resumo:
Opiate alkaloids are potent analgesics that exert multiple pharmacological effects in the nervous system by activating G protein-coupled receptors. Receptor internalization upon stimulation may be important for desensitization and resensitization, which affect cellular responsiveness to ligands. Here, we investigated the agonist-induced internalization of the mu opioid receptor (MOR) in vivo by using the guinea pig ileum as a model system and immunohistochemistry with an affinity-purified antibody to the C terminus of rat MOR. Antibody specificity was confirmed by the positive staining of human embryonic kidney 293 cells transfected with epitope-tagged MOR cDNA, by the lack of staining of cells transfected with the delta or kappa receptor cDNA, and by the abolition of staining when the MOR antibody was preadsorbed with the MOR peptide fragment. Abundant MOR immunoreactivity (MOR-IR) was localized to the cell body, dendrites, and axonal processes of myenteric neurons. Immunostaining was primarily confined to the plasma membrane of cell bodies and processes. Within 15 min of an intraperitoneal injection of the opiate agonist etorphine, intense MOR-IR was present in vesicle-like structures, which were identified as endosomes by confocal microscopy. At 30 min, MOR-IR was throughout the cytoplasm and in perinuclear vesicles. MOR-IR was still internalized at 120 min. Agonist-induced endocytosis was completely inhibited by the opiate antagonist naloxone. Interestingly, morphine, a high-affinity MOR agonist, did not cause detectable internalization, but it partially inhibited the etorphine-induced MOR endocytosis. These results demonstrate the occurrence of agonist-selective MOR endocytosis in neurons naturally expressing this receptor in vivo and suggest the existence of different mechanisms regulating cellular responsiveness to ligands.
Resumo:
Xeroderma pigmentosum type G (XPG) is a human genetic disease exhibiting extreme sensitivity to sunlight. XPG patients are defective XPG endonuclease, which is an enzyme essential for DNA repair of the major kinds of solar ultraviolet (UV)-induced DNA damages. Here we describe a novel dynamics of this protein within the cell nucleus after UV irradiation of human cells. Using confocal microscopy, we have localized the immunofluorescent, antigenic signal of XPG protein to foci throughout the cell nucleus. Our biochemical studies also established that XPG protein forms a tight association with nuclear structure(s). In human skin fibroblast cells, the number of XPG foci decreased within 2 h after UV irradiation, whereas total nuclear XPG fluorescence intensity remained constant, suggesting redistribution of XPG from a limited number of nuclear foci to the nucleus overall. Within 8 h after UV, most XPG antigenic signal was found as foci. Using beta-galactosidase-XPG fusion constructs (beta-gal-XPG) transfected into HeLa cells, we have identified a single region of XPG that is evidently responsible both for foci formation and for the UV dynamic response. The fusion protein carrying the C terminus of XPG (amino acids 1146-1185) localized beta-gal specific antigenic signal to foci and to the nucleolus regions. After UV irradiation, antigenic beta-gal translocated reversibly from the subnuclear structures to the whole nucleus with kinetics very similar to the movements of XPG protein. These findings lead us to propose a model in which distribution of XPG protein may regulate the rate of DNA repair within transcriptionally active and inactive compartments of the cell nucleus.
Resumo:
The dyneins are a class of motor protein involved in ciliary and flagellar motility, organelle transport, and chromosome segregation. Because of their large size and subunit complexity, relatively little is known about their mechanisms of force production and regulation. We report here on the expression and analysis of the entire rat cytoplasmic dynein heavy chain (Mr 532,000). Full-length cDNAs were constructed from a series of partial clones and tagged at the C terminus with either a FLAG-epitope tag or a His6-tag. The recombinant polypeptides were expressed either in insect cells by baculovirus infection or in COS-7 cells by transient transfection. The recombinant protein was mostly soluble and showed good microtubule binding. It exhibited a broad sedimentation profile, indicative of the formation of dimers as well as higher order multimers. Good microtubule gliding motility activity was observed in assays of heavy chain expressed in either insect or COS-7 cells. Average microtubule gliding velocities of 1.2-1.8 microm/sec were observed, comparable with the rates determined for calf brain cytoplasmic dynein. These results represent the first indication that recombinant heavy chain alone is capable of force production, and should lead to rapid progress in defining the dynein motor domain.
Resumo:
cGMP phosphodiesterase (PDE) is the key effector enzyme of vertebrate photoreceptor cells that regulates the level of the second messenger, cGMP. PDE consists of catalytic alpha and beta subunits (Palpha and Pbeta) and two inhibitory gamma subunits (Pgamma) that block PDE activity in the dark. The major inhibitory region has been localized to the C terminus of Pgamma. The last C-terminal residues -IleIle form an important hydrophobic domain critical for the inhibition of PDE activity. In this study, mutants of Pgamma were designed for cross-linking experiments to identify regions on Palpha and Pbeta subunits that bind to the Pgamma C terminus. In one of the mutants, the cysteine at position 68 was substituted with serine, and the last four C-terminal residues of Pgamma were replaced with a single cysteine. This mutant, Pgamma83Cys, was labeled with photoprobe 4-(N-maleimido) benzophenone (MBP) at the cysteine residue. The labeled Pgamma83CysMBP mutant was a more potent inhibitor of PDE activity than the unlabeled mutant, indicating that the hydrophobic MBP probe mimics the Pgamma hydrophobic C terminus. A specific, high-yield cross-linking of up to 70% was achieved between the Pgamma83CysMBP and PDE catalytic subunits. Palpha and the N-terminally truncated Pbeta (lacking 147 aa residues) cross-linked to Pgamma83CysMBP with the same efficiency. Using mass spectrometric analysis of tryptic fragments from the cross-linked PDE, we identified the site of cross-linking to aa residues 751-763 of Palpha. The corresponding region of Pbeta, Pbeta-749-761, also may bind to the Pgamma C terminus. Our data suggest that Pgamma blocks PDE activity through the binding to the catalytic site of PDE, near the NKXD motif, a consensus sequence for interaction with the guanine ring of cGMP.
Resumo:
We have isolated a cDNA encoding human ceramide glucosyltransferase (glucosylceramide synthase, UDP-glucose:N-acylsphingosine D-glucosyltransferase, EC 2.4.1.80) by expression cloning using as a recipient GM-95 cells lacking the enzyme. The enzyme catalyzes the first glycosylation step of glycosphingolipid synthesis and the product, glucosylceramide, serves as the core of more than 300 glycosphingolipids. The cDNA has a G+C-rich 5' untranslated region of 290 nucleotides and the open reading frame encodes 394 amino acids (44.9 kDa). A hydrophobic segment was found near the N terminus that is the potential signal-anchor sequence. In addition, considerable hydrophobicity was detected in the regions close to the C terminus, which may interact with the membrane. A catalytically active enzyme was produced from Escherichia coli transfected with the cDNA. Northern blot analysis revealed a single transcript of 3.5 kb, and the mRNA was widely expressed in organs. The amino acid sequence of ceramide glucosyltransferase shows no significant homology to ceramide galactosyltransferase, which indicates different evolutionary origins of these enzymes.
Resumo:
Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins.
Resumo:
The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.
Resumo:
Nerve cells contain abundant subpopulations of cold-stable microtubules. We have previously isolated a calmodulin-regulated brain protein, STOP (stable tubule-only polypeptide), which reconstitutes microtubule cold stability when added to cold-labile microtubules in vitro. We have now cloned cDNA encoding STOP. We find that STOP is a 100.5-kDa protein with no homology to known proteins. The primary structure of STOP includes two distinct domains of repeated motifs. The central region of STOP contains 5 tandem repeats of 46 amino acids, 4 with 98% homology to the consensus sequence. The STOP C terminus contains 28 imperfect repeats of an 11-amino acid motif. STOP also contains a putative SH3-binding motif close to its N terminus. In vitro translated STOP binds to both microtubules and Ca2+-calmodulin. When STOP cDNA is expressed in cells that lack cold-stable microtubules, STOP associates with microtubules at 37 degrees C, and stabilizes microtubule networks, inducing cold stability, nocodazole resistance, and tubulin detyrosination on microtubules in transfected cells. We conclude that STOP must play an important role in the generation of microtubule cold stability and in the control of microtubule dynamics in brain.
Resumo:
The E2F1 transcription factor has a well-characterized activation domain at its C terminus and the E1A protein has a recently defined activation domain at its N terminus. Here we show that these activation domains are highly related in sequence. The sequence homology reflects, at least partly, the conservation of common binding sites for the RB and CBP/p300 proteins, which are preserved in the same relative order along E2F1 and E1A. Furthermore, the interaction of RB and CBP with these two activation domains results in the same functional consequences: RB represses both activation domains, whereas CBP stimulates them. We conclude that the activation domains of E1A(12s) and E2F1 belong to a novel functional class, characterized by specific protein binding sites. The implication of this conservation with respect to E1A-induced stimulation of E2F activity is discussed.
Resumo:
Polycystic kidney disease 1 (PKD1) is the major locus of the common genetic disorder autosomal dominant polycystic kidney disease. We have studied PKD1 mRNA, with an RNase protection assay, and found widespread expression in adult tissue, with high levels in brain and moderate signal in kidney. Expression of the PKD1 protein, polycystin, was assessed in kidney using monoclonal antibodies to a recombinant protein containing the C terminus of the molecule. In fetal and adult kidney, staining is restricted to epithelial cells. Expression in the developing nephron is most prominent in mature tubules, with lesser staining in Bowman's capsule and the proximal ureteric bud. In the nephrogenic zone, detectable signal was observed in comma- and S-shaped bodies as well as the distal branches of the ureteric bud. By contrast, uninduced mesenchyme and glomerular tufts showed no staining. In later fetal (>20 weeks) and adult kidney, strong staining persists in cortical tubules with moderate staining detected in the loops of Henle and collecting ducts. These results suggest that polycystin's major role is in the maintenance of renal epithelial differentiation and organization from early fetal life. Interestingly, polycystin expression, monitored at the mRNA level and by immunohistochemistry, appears higher in cystic epithelia, indicating that the disease does not result from complete loss of the protein.
Resumo:
Cytotoxic lymphocytes are characterized by their inclusion of cytoplasmic granules that fuse with the plasma membrane following target cell recognition. We previously identified a cytotoxic granule membrane protein designated p15-TIA-1 that is immunochemically related to an RNA-recognition motif (RRM)-type RNA-binding protein designated p40-TIA-1. Although it was suggested that p15-TIA-1 might be derived from p40-T1A-1 by proteolysis, N-terminal amino acid sequencing of p15-TIA-1 immunoaffinity purified from a natural killer (NK) cell line by using monoclonal antibody (mAb) 2G9 revealed that p15-T1A-1 is identical to the deduced amino acid sequence of NKG7 and GIG-1, cDNAs isolated from NK cells and granulocyte-colony-stimulating factor-treated mononuclear cells, respectively. Epitope mapping revealed that mAb 2G9 recognizes the C terminus of p15-T1A-1 and p40-T1A-1. The deduced amino acid sequence of p15-T1A-1/NKG7/GIG-1 predicts that the protein possesses four transmembrane domains, and immuno-electron microscopy localizes the endogenous protein to the membranes of cytotoxic granules in NK cells. Given its subcellular localization, we propose to rename-this protein GMP-17, for granule membrane protein of 17 kDa. Immunofluorescence microscopy of freshly isolated NK cells confirms this granular localization. Target cell-induced NK cell degranulation results in translocation of GMP-17 from granules to the plasma membrane, suggesting a possible role for GMP-17 in regulating the effector function of lymphocytes and neutrophils.
Resumo:
Deposition of PrP amyloid in cerebral vessels in conjunction with neurofibrillary lesions is the neuropathologic hallmark of the dementia associated with a stop mutation at codon 145 of PRNP, the gene encoding the prion protein (PrP). In this disorder, the vascular amyloid in tissue sections and the approximately 7.5-kDa fragment extracted from amyloid are labeled by antibodies to epitopes located in the PrP sequence including amino acids 90-147. Amyloid-laden vessels are also labeled by antibodies against the C terminus, suggesting that PrP from the normal allele is involved in the pathologic process. Abundant neurofibrillary lesions are present in the cerebral gray matter. They are composed of paired helical filaments, are labeled with antibodies that recognize multiple phosphorylation sites in tau protein, and are similar to those observed in Alzheimer disease. A PrP cerebral amyloid angiopathy has not been reported in diseases caused by PRNP mutations or in human transmissible spongiform encephalopathies; we propose to name this phenotype PrP cerebral amyloid angiopathy (PrP-CAA).
Resumo:
A small (96-aa) protein, virus protein R (Vpr), of human immunodeficiency virus type 1 contains one hydrophobic segment that could form a membrane-spanning helix. Recombinant Vpr, expressed in Escherichia coli and purified by affinity chromatography, formed ion channels in planar lipid bilayers when it was added to the cis chamber and when the trans chamber was held at a negative potential. The channels were more permeable to Na+ than to Cl- ions and were inhibited when the trans potential was made positive. Similar channel activity was caused by Vpr that had a truncated C terminus, but the potential dependence of channel activity was no longer seen. Antibody raised to a peptide mimicking part of the C terminus of Vpr (AbC) inhibited channel activity when added to the trans chamber but had no effect when added to the cis chamber. Antibody to the N terminus of Vpr (AbN) increased channel activity when added to the cis chamber but had no effect when added to the trans chamber. The effects of potential and antibodies on channel activity are consistent with a model in which the positive C-terminal end of dipolar Vpr is induced to traverse the bilayer membrane when the opposite (trans) side of the membrane is at a negative potential. The C terminus of Vpr would then be available for interaction with AbC in the trans chamber, and the N terminus would be available for interaction with AbN in the cis chamber. The ability of Vpr to form ion channels in vitro suggests that channel formation by Vpr in vivo is possible and may be important in the life cycle of human immunodeficiency virus type 1 and/or may cause changes in cells that contribute to AIDS-related pathologies.
Resumo:
A diuretic hormone of unusual structure was isolated from extracts of whole heads of the mealworm Tenebrio molitor. The hormone is a 37-aa peptide of 4371 Da, with the sequence SPTISITAPIDVLRKTWEQERARKQMVKNREFLNSLN. This peptide increases cAMP production in Malpighian tubules of T. molitor. The amino acid sequence reveals that this peptide is a member of the family of sauvagine/corticotropin-releasing factor/urotensin I-related insect diuretic hormones. The C-terminal sequence of this peptide is quite different from other members of this family, which have a hydrophobic C terminus (isoleucinamide or valinamide). When aligned comparably, T. molitor diuretic hormone has a more hydrophilic C terminus, leucylasparagine (free acid). In contrast to all other known diuretic hormones of this family, this peptide has exceptionally low stimulatory activity on cAMP production in Malpighian tubules of Manduca sexta. However, at nanomolar concentrations it stimulates cAMP production in Malpighian tubules of T. molitor. Diuretic hormones of this family have been isolated previously from Lepidoptera, Orthoptera, Dictyoptera, and Diptera. This appears to be the first diuretic hormone isolated from a coleopteran insect.