953 resultados para C and N mineralization rates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 598 sediments were analyzed to determine the factors controlling the rare earth element (REE) geochemistry of the hydrothermal component. Site 598 provides an ideal sample suite for this purpose. Samples are lithologically "simple," primarily consisting of a hydrothermal component and biogenous carbonates. Also, the composition of the hydrothermal component appears unchanged through time or space, and the site appears to have undergone minimal diagenetic alteration. The shale-normalized REE patterns are similar to the pattern of seawater, varying only in absolute REE content. The REE content increases with distance from the paleorise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Results presented are consistent with the following model: the source mechanism for the REE content of hydrothermal sediments is scavenging by Fe oxyhydroxides from seawater. With prolonged exposure to seawater resulting from transport far from the injection point and/or long residence at the seawatersediment interface, the absolute REE content of hydrothermal sediments increases and becomes more like seawater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elemental C and N percent composition and natural abundance of stable C and N isotopes of plankton species and/or size-fractions collected in several cruises on the N Atlantic Ocean from Greenland to Norway and around Iceland. Determinations included key copepod and krill species. Lipid extraction was performed in some samples to determine carbón isotope depletion factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isotopic compositions of marine sediments and fossils have been investigated from northern basins of the Mediterranean to help constrain local oceanographic and climatic changes adjacent to the uplifting Alps. Stable C and O isotope compositions of benthic and planktonic foraminifera from the Umbria-Marche region (UMC) have an offset characteristic for their habitats and the changes in composition mimic global changes, suggesting that the regional conditions of climate and the carbon cycle were controlled by global changes. The radiogenic isotope composition of these fossil assemblages allows recognition of three distinct periods. In the first period, from 25 to 19 Ma, high epsilon-Nd values and low 87Sr/86Sr of sediments and fossils support intense tectonism and volcanism, related to the opening of the western Mediterranean. In the second period, from 19 to 13 Ma the 87Sr/86Sr ratio of Mediterranean (UMC) deviate from the global ocean, which is compatible with rapid uplift of the hinterland and intense influx of Sr from Mesozoic carbonates of the western Apennines. This local control on the seawater was driven by a humid and warm climate and indicates restricted exchange of water with the global ocean. Generally, the epsilon-Nd values of the fossils are very similar to those of Indian Ocean water, with brief periods of a decrease in the epsilon-Nd values coinciding with volcanic events and maybe sea level variation at 15.2 Ma. In the third period, from 13 to 10 Ma the fossils have 87Sr/86Sr similar to those of Miocene seawater while their epsilon-Nd values change considerably with time. This indicates fluctuating influence of the Atlantic versus the Paratethys and/or locally evolved seawater in the Mediterranean driven by global sea level changes. Other investigated localities near the Alps and from the ODP 900 site are compatible with this oceanographic interpretation. However, in the late early Miocene, enhanced local control, reflecting erosion of old crustal silicate rocks near the Alps, results in higher 87Sr/86Sr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses the problem of diagenetic fractionation of d15N in sedimentary organic matter by constructing isotopic mass balances for the sedimentary nitrogen and pore water ammonium at two Ocean Drilling Program (ODP) sites, 1227 and 1230. At Site 1230, ammonium production flux integrated through the sedimentary column indicates that >60% of organic matter is lost to decomposition. The d15N of pore water ammonium is <0.7 per mil different from that of the sedimentary organic matter, which implies that very little isotopic fractionation is associated with degradation of organic matter at this site. The constant d15N of the solid-phase sedimentary nitrogen through the whole profile supports this conclusion. Atomic C/N ratios (9-12) indicate that organic matter at this site is primarily of marine origin. At Site 1227, the sedimentary organic matter appears to be a mixture of terrestrial and marine components. Ammonium is ~4 heavier than the organic matter. The observed isotopic enrichment of pore water ammonium relative to the sedimentary nitrogen might indicate either the preferential decomposition of isotopically heavier marine fraction of the organic matter, or possibly, a nonsteady-state condition of the ammonium concentration and d15N profiles. Interpretation of the results at Site 1227 is further complicated by the contribution of ammonium with d15N of ~4 per mil that is diffusing upward from Miocene brines.