957 resultados para Breakdown symmetry
Resumo:
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.
Resumo:
Some polynomials and interpolatory quadrature rules associated with strong Stieltjes distributions are considered, especially when the distributions satisfy a Certain symmetric property. (C) 1995 Academic Press, Inc.
Resumo:
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. on the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE-PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films.
Resumo:
Using a form of the effective potential for composite operators with a variational approach we show that it is possible to get different directions of the chiral phase transition in QCD. Which one occurs depends on the way the Schwinger-Dyson equation for the fermion self-energy is used in the 2-loop term of the effective potential. We must choose the 2-loop term which agrees with phenomenology in each form of the effective potential.
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Resumo:
The dielectric strength of films made from poly(ethylene terephthalate) (PET) coated with a thin layer of polyaniline (PANI) was studied. The PANI layer was deposited on the PET films by the 'in situ' chemical polymerization method. The PANI layer of the PANI/PET films was undoped in NH4OH 0.1 M solution and re-doped with aqueous HCl solution under different pH values varying from 1 to 10. Electric breakdown measurements were performed by applying a voltage ramp and the results showed a dependence of the dielectric strength on the pH of the doping solution due to the changes in the electrical conductivity of the PANI layer. The dielectric strength of PET/PANI films treated under higher pH conditions showed an electric strength about 30% larger than the PET films, since it leads to a non-conductive PANI layer.
Resumo:
We show that relativistic mean fields theories with scalar S, and vector V, quadratic radial potentials can generate a harmonic oscillator with exact pseudospin symmetry and positive energy bound states when S = -V. The eigenenergies are quite different from those of the non-relativistic harmonic oscillator. We also discuss a mechanism for perturbatively breaking this, symmetry by introducing a tensor potential. Our results shed light into the intrinsic relativistic nature of the pseudospin symmetry, which might be important in high density systems such as neutron stars.
Resumo:
This article reports a theoretical study based on experimental results for barium zirconate, BaZrO3 (BZ) thin films, using periodic mechanic quantum calculations to analyze the symmetry change in a structural order-disorder simulation. Four periodic models were simulated using CRYSTAL98 code to represent the ordered and disordered BZ structures. The results were analyzed in terms of the energy level diagrams and atomic orbital distributions to explain and understand the BZ photoluminescence properties (PL) at room temperature for the disordered structure based on structural deformation and symmetry changes. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 111: 694-701, 2011
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dielectric and Raman scattering experiments were performed on polycrystalline Pb(1-x)Ba(x)TiO(3) thin films (x=0.40 and 0.60) as a function of temperature. The dielectric study on single phase compositions revealed that a diffuse-type phase transition occurred upon transformation of the cubic paraelectric to the tetragonal ferroelectric phase in all thin films, which showed a broadening of the dielectric peak. Diffusivity was found to increase with increasing barium contents in the composition range under study. In addition, the temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted as a breakdown of the local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broadbands in some temperature intervals above the paraferroelectric phase transition temperature suggest a diffuse-type phase transition. (C) 2008 American Institute of Physics.
Resumo:
Invariance under non-linear Ŵ∞ algebra is shown for the two-boson Liouville type of model and its algebraic generalizations, the extended conformal Toda models. The realization of the corresponding generators in terms of two boson currents within KP hierarchy is presented.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.