966 resultados para Brain activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The World Health Organization (WHO) has shown concern about the burden of tuberculosis in the developing countries. Even though rifampicin is an effective drug in the management of tuberculosis, it has been documented to have some toxic effects in humans. Therefore, this study intends to investigate the modulatory effect of vitamins C and E on the hepatotoxicity, sperm quality and brain toxicity of Rifampicin. Forty Wistar albino rats were used, 10 animals per group. Group 1 animals received 0.3 mL of distilled water, the Group 2 animals received the therapeutic dose of rifampicin, Group 3 animals received therapeutic doses of rifampicin plus vitamin E, while Group 4 received therapeutic doses of rifampicin and vitamin C. The administration was performed orally during three months; the animals were sacrificed by cervical dislocation at the end of that period. Blood samples were collected and liver function and lipid profile was analyzed using fully automated clinical chemistry device. The liver, brain and reproductive organs underwent histopathological examination. Sperm samples were collected from the epididymis to achieve count and motility and morphological analysis. Results showed rifampicin alone to raise (p < 0.05) liver function enzymes (Aspartate amino transferase [AST], Serum alanine amino transferase [ALT] and Total Bilirubin) when compared with controls. While the vitamin E treated group showed remarkable protection, the vitamin C treated group showed questionable protection against the rifampicin induced liver damage. Sperm count results showed an important (p < 0.05) increase in the sperm quality in vitamin E and C treated groups. However, the vitamin E plus Rifampicin treated group showed increased lipid peroxidation. The histopathological findings revealed structural damages by rifampicin in liver, brain and epididymis while some remarkable architectural integrity was observed in the antioxidant-treated groups. It can be concluded that vitamin E or C improved sperm quality and protected against the brain damage caused by rifampicin. Moreover, vitamin E demonstrated remarkable hepatoprotection against rifampicin induced damage while vitamin C shows a questionable hepatoprotection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The Panayiotopoulos type of idiopathic occipital epilepsy has peculiar and easily recognizable ictal symptoms, which are associated with complex and variable spike activity over the posterior scalp areas. These characteristics of spikes have prevented localization of the particular brain regions originating clinical manifestations. We studied spike activity in this epilepsy to determine their brain generators. Methods: The EEG of 5 patients (ages 7–9) was recorded, spikes were submitted to blind decomposition in independent components (ICs) and those to source analysis (sLORETA), revealing the spike generators. Coherence analysis evaluated the dynamics of the components. Results: Several ICs were recovered for posterior spikes in contrast to central spikes which originated a single one. Coherence analysis supports a model with epileptic activity originating near lateral occipital area and spreading to cortical temporal or parietal areas. Conclusions: Posterior spikes demonstrate rapid spread of epileptic activity to nearby lobes, starting in the lateral occipital area. In contrast, central spikes remain localized in the rolandic fissure. Significance: Rapid spread of posterior epileptic activity in the Panayitopoulos type of occipital lobe epilepsy is responsible for the variable and poorly localized spike EEG. The lateral occipital cortex is the primary generator of the epileptic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Occipital lobe epilepsy (OLE) presents in childhood with different manifestations, age of onset and EEG features that form distinct syndromes. The ictal clinical symptoms are difficult to correlate with onset in particular areas in the occipital lobes, and the EEG recordings have not been able to overcome this limitation. The mapping of epileptogenic cortical regions in OLE remains therefore an important goal in our understanding of these syndromes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology, Neuroscience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout the brain, patterns of activity in postsynaptic neurons influence the properties of synaptic inputs. Such feedback regulation is central to neural network stability that underlies proper information processing and feature representation in the central nervous system. At the cellular level, tight coupling of presynaptic and postsynaptic function is fundamental to neural computation and synaptic plasticity. The cohort of protein complexes at the pre and postsynaptic membrane allows for tight synapse-specific segregation and integration of diverse molecular and electrical signals.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Medicinal Chemistry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work has shown that aggregate cultures prepared from fetal rat telencephalon and grown in a chemically defined medium offer a useful model to study developmental processes such as myelin synthesis. Since compact myelin is formed in these cultures, we investigated the possibility to use this culture system to study demyelinating mechanisms. In particular, we examined the effect of a monoclonal antibody (8-18C5) directed against the myelin/oligodendrocyte glycoprotein (MOG). We found that addition of anti-MOG antibodies and complement to aggregate cultures led to a highly significant decrease in myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) specific activity. These results indicate that, in our culture system, anti-MOG antibodies have a strong demyelinating effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of ochratoxin A (OTA) to damage brain cells was studied by using a three-dimensional cell culture system as model for the developing brain. Aggregating cell cultures of foetal rat telencephalon were tested either during an early developmental period, or during a phase of advanced maturation, over a wide range of OTA concentrations (0.4 nM to 50 microM). By monitoring changes in activities of cell type-specific enzymes (ChAt and GAD, for cholinergic and GABAergic neurones, respectively, GS for astrocytes and CNP for oligodendrocytes), the concentration-dependent toxicity and neurodevelopmental effects of OTA were determined. OTA proved to be highly toxic, since a 10-day treatment at 50 nM caused a general cytotoxicity in both mature and immature cultures. At 10 nM of OTA, cell type-specific effects were observed: in immature cultures, a loss in neuronal and oligodendroglial enzyme activities, and an increase in the activity of the astroglial marker glutamine synthetase were found, Furthermore, at 2 and 10 nM of OTA, a clustering of microglial cells was observed. In mature cultures, OTA was somewhat less potent, but caused a similar pattern of toxic effects. A 24 h-treatment with OTA resulted in a concentration-dependent decrease in protein synthesis, with IC50 values of 25 nM and 33 nM for immature and mature cultures respectively. Acute (24 h) treatment at high OTA concentrations (10 to 50 microM) caused a significant increase in reactive oxygen species formation, as measured by the intracellular oxidation of 2',7'-dichlorofluorescin. These results suggest that OTA has the potential to be a potent toxicant to brain cells, and that its effects at nanomolar concentrations are primarily due to the inhibition of protein synthesis, whereas ROS seem not to be involved in the toxicity mediated by a chronic exposure to OTA at such low concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several groups have demonstrated the existence of self-renewing stem cells in embryonic and adult mouse brain. In vitro, these cells proliferate in response to epidermal growth factor, forming clusters of nestin-positive cells that may be dissociated and subcultured repetitively. Here we show that, in stem cell clusters derived from rat embryonic striatum, cell proliferation decreased with increasing number of passages and in response to elevated concentrations of potassium (30 mM KCl). In monolayer culture, the appearance of microtubule-associated protein type-5-immunoreactive (MAP-5(+)) cells (presumptive neurons) in response to basic fibroblast growth factor (bFGF) was reduced at low cell density and with increasing number of passages. In the presence of bFGF, elevated potassium caused a more differentiated neuronal phenotype, characterized by an increased proportion of MAP-5(+) cells, extensive neuritic branching, and higher specific activity of glutamic acid decarboxylase. Dissociated stem cells were able to invade cultured brain cell aggregates containing different proportions of neurons and glial cells, whereas they required the presence of a considerable proportion of glial cells in the host cultures to become neurofilament H-positive. The latter observation supports the view that astrocyte-derived factors influence early differentiation of the neuronal cell lineage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies at high field (7Tesla) have reported small metabolite changes, in particular lactate and glutamate (below 0.3μmol/g) during visual stimulation. These studies have been limited to the visual cortex because of its high energy metabolism and good magnetic resonance spectroscopy (MRS) sensitivity using surface coil. The aim of this study was to extend functional MRS (fMRS) to investigate for the first time the metabolite changes during motor activation at 7T. Small but sustained increases in lactate (0.17μmol/g±0.05μmol/g, p<0.001) and glutamate (0.17μmol/g±0.09μmol/g, p<0.005) were detected during motor activation followed by a return to the baseline after the end of activation. The present study demonstrates that increases in lactate and glutamate during motor stimulation are small, but similar to those observed during visual stimulation. From the observed glutamate and lactate increase, we inferred that these metabolite changes may be a general manifestation of the increased neuronal activity. In addition, we propose that the measured metabolite concentration increases imply an increase in ΔCMRO2 that is transiently below that of ΔCMRGlc during the first 1 to 2min of the stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cerebral ischemic preconditioning (IPC), a first sublethal ischemia increases the resistance of neurons to a subsequent severe ischemia. Despite numerous studies, the mechanisms are not yet fully understood. Our goal is to develop an in vitro model of IPC on hippocampal organotypic slice cultures. Instead of anoxia, we chose to apply varying degrees of hypoxia that allows us various levels of insult graded from mild to severe. Cultures are exposed to combined oxygen and glucose deprivation (OGD) of varying intensities, ranging from mild to severe, assessing both the electrical activity and cell death. IPC was accomplished by exposure to the mildest ischemia condition (10% of O2 for 15 min) 24 h before the severe deprivation (5% of O2 for 30 min). Interestingly, IPC not only prevented delayed ischemic cell death 6 days after insult but also the transient loss of evoked potential response. The major interest and advantage of this system over both the acute slice preparation and primary cell cultures is the ability to simultaneously measure the delayed neuronal damage and neuronal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.