986 resultados para Biogasanlage, Acidogenese, Propionsäure, Isolate, anaerober Abbau
Resumo:
Twenty three isolates of Beauveria bassiana and 13 isolates of Metarhizium anisopliae were tested on third instar nymphs of Triatoma infestans, a serious vector of Chagas disease. Pathogenicity tests at saturated humidity showed that this insect is very susceptible to fungal infection. At lower relative humidity (50%), conditions expected in the vector microhabitat, virulence was significantly different among isolates. Cumulative mortality 15 days after treatment varied from 17.5 to 97.5%, and estimates of 50% survival time varied from 6 to 11 days. Maintaining lower relative humidity, four B. bassiana and two M. anisopliae isolates were selected for analysis of virulence at different conidial concentrations and temperatures. Lethal concentrations sufficient to kill 50% of insects (LC50) varied from 7.1x105 to 4.3x106 conidia/ml, for a B. bassiana isolate (CG 14) and a M. anisopliae isolate (CG 491) respectively. Most isolates, particularly B. bassiana isolates CG 24 and CG 306, proved to be more virulent at 25 and 30°C, compared to 15 and 20°C. The differential virulence at 50% humidity observed among some B. bassiana isolates was not correlated to phenetic groups in cluster analysis of RAPD markers. In fact, the B. bassiana isolates analyzed presented a high homogeneity (> 73% similarity).
Resumo:
The genus Leishmania includes 30 described species which infect a wide variety of mammalian hosts. The precise identification of leishmanial parasites at the species level is very important in order to determine whether an organism, causing the disease in a given area, is of the same biotype as that found in suspected mammalian reservoirs. The objectives of the present study were (1) to identify leishmanial parasites isolated from humans and wild rodents from the State of Campeche, an endemic focus of localized cutaneous leishmaniasis (LCL) in southern Mexico, using an indirect immunofluorescent assay (IFA) with monoclonal antibodies (Mabs); and (2) to determine if the parasites of the two types of hosts were of the same biotype. All the wild rodents (six Ototylomys phyllotis, eight Oryzomys melanotis, five Peromyscus yucatanicus and two Sigmodon hispidus) and 96% (24/25) of the human isolates were identified as Leishmania (L.) mexicana confirming that this specific LCL focus is a wild zoonosis. The presence of one human isolate of L. (Viannia) braziliensis in the State of Campeche, confirmed the importance of an accurate taxonomic identification at species level.
Resumo:
Microautophagy is the direct uptake of soluble or particulate cellular constituents into lysosomes. Here, I describe methods to reconstitute and study this process in vitro, using vacuoles (lysosomes) from the yeast Saccharomyces cerevisiae as model organelles. Protocols to grow the cells, isolate vacuoles from them, and to induce microautophagy of soluble tracers are presented.
Resumo:
The infection pattern in Swiss mice and Triatomine bugs (Rhodnius neglectus) of eleven clones and the original stock of a Trypanosoma cruzi isolate, derived from a naturally infected Didelphis marsupialis, were biochemically and biologically characterized. The clones and the original isolate were in the same zymodeme (Z1) except that two clones were found to be in zymodeme 2 when tested with G6PDH. Although infective, neither the original isolate nor the clones were highly virulent for the mice and lesions were only observed in mice infected with the original stock and one of the clones (F8). All clones and the original isolate infected bugs well while only the original isolate and clones E2 and F3 yielded high metacyclogenesis rates. An observed correlation between absence of lesions in the mammal host and high metacyclogenesis rates in the invertebrate host suggest a evolutionary trade off i.e. a fitness increase in one trait which is accompanied by a fitness reduction in a different one. Our results suggest that in a species as heterogeneous as T. cruzi, a cooperation effect among the subpopulations should be considered.
Resumo:
Extensive characterisation of Trypanosoma cruzi by isoenzyme phenotypes has separated the species into three principal zymodeme groups, Z1, Z2 and Z3, and into many individual zymodemes. There is marked diversity within Z2. A strong correlation has been demonstrated between the strain clusters determined by isoenzymes and those obtained using random amplified polymorphic DNA (RAPD) profiles. Polymorphisms in ribosomal RNA genes, in mini-exon genes, and microsatellite fingerprinting indicate the presence of at least two principal T. cruzi genetic lineages. Lineage 1 appears to correspond with Z2 and lineage 2 with Z1. Z1 (lineage 2) is associated with Didelphis. Z2 (lineage 1) may be associated with a primate host. Departures from Hardy-Weinberg equilibrium and linkage disequilibrium indicate that propagation of T. cruzi is predominantly clonal. Nevertheless, two studies show putative homozygotes and heterozygotes circulating sympatrically: the allozyme frequencies for phosphoglucomutase, and hybrid RAPD profiles suggest that genetic exchange may be a current phenomenon in some T. cruzi transmission cycles. We were able to isolate dual drug-resistant T. cruzi biological clones following copassage of putative parents carrying single episomal drug-resistant markers. A multiplex PCR confirmed that dual drug-resistant clones carried both episomal plasmids. Preliminary karyotype analysis suggests that recombination may not be confined to the extranuclear genome.
Resumo:
Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.
Resumo:
A protozoan flagelate has recently been isolated from Amaranthus retroflexus. This plant grows near economically important crops in southeastern Spain, which are known to be parasitized by Phytomonas spp. The present study focuses on the characterization of the energy metabolism of this new isolate. These flagellates utilize glucose efficiently as their primary energy source, although they are unable to completely degrade it. They excrete ethanol, acetate, glycine, and succinate in lower amount, as well as ammonium. The presence of glycosomes was indicated by the early enzymes of the glycolytic pathway, one enzyme of the glycerol pathway (glycerol kinase), and malate dehydrogenase. No evidence of a fully functional citric-acid cycle was found. In the absence of catalase activity, these flagellates showed significant superoxide dismutase activity located in the glycosomal and cytosolic fractions. These trypanosomes, despite being morphologically and metabolically similar to other Phytomonas isolated from the same area, showed significant differences, suggesting that they are phylogenetically different species.
Resumo:
An increase in the incidence of human visceral leishmaniasis (HVL) has been detected in recent years on Margarita Island, located off the NE coast of Venezuela. Recent studies have revealed reactivity to rK39 antigen (Leishmania chagasi) in 20% of 541 sera from domestic dogs in endemic communities; PCR reactions were positive using primers for the L. donovani complex. Here we report that isolates from human and canine infection, identified by isoenzyme analysis, correspond to L. infantum, zymodeme MON-1. This appears to be the first isolation and identification of an isolate from HVL on Margarita Island and demonstrates the presence of this zymodeme in the canine population.
Resumo:
Evidence has emerged that the initiation and growth of gliomas is sustained by a subpopulation of cancer-initiating cells (CICs). Because of the difficulty of using markers to tag CICs in gliomas, we have previously exploited more robust phenotypic characteristics, including a specific morphology and intrincic autofluorescence, to identify and isolate a subpopulation of glioma CICs, called FL1(+). The objective of this study was to further validate our method in a large cohort of human glioma and a mouse model of glioma. Seventy-four human gliomas of all grades and the GFAP-V(12)HA-ras B8 mouse model were analyzed for in vitro self-renewal capacity and their content of FL1(+). Nonneoplastic brain tissue and embryonic mouse brain were used as control. Genetic traceability along passages was assessed with microsatellite analysis. We found that FL1(+) cells from low-grade gliomas and from control nonneoplasic brain tissue show a lower level of autofluorescence and undergo a restricted number of cell divisions before dying in culture. In contrast, we found that FL1(+) cells derived from many but not all high-grade gliomas acquire high levels of autofluorescence and can be propagated in long-term cultures. Moreover, FL1(+) cells show a remarkable traceability over time in vitro and in vivo. Our results show that FL1(+) cells can be found in all specimens of a large cohort of human gliomas of different grades and in a model of genetically induced mouse glioma as well as nonneoplastic brain. However, their self-renewal capacity is variable and seems to be dependent on the tumor grade.
Resumo:
Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.
Resumo:
In schistosomiasis, granuloma formation to parasite eggs signals the beginning of a chronic and potentially life-threatening disease. Granulomas are strictly mediated by CD4+ T helper (Th) cells specific for egg antigens; however, the number and identity of these T cell-sensitizing molecules are largely unknown. We have used monoclonal T cell reagents derived from egg-sensitized individuals as probes to track down, isolate and positively identify several egg antigens; this approach implicitly assures that the molecules of interest are T cell immunogens and, hence, potentially pathogenic. The best studied and most abundant egg component is the Sm-p40 antigen. Sm-p40 and its peptide 234-246 elicit a strikingly immunodominant Th-1-polarized response in C3H and CBA mice, which are H-2k strains characterized by severe egg-induced immunopathology. Two additional recently described T cell-sensitizing egg antigens are Schistosoma mansoni phosphoenolpyruvate carboxykinase (Sm-PEPCK) and thioredoxin peroxidase-1 (Sm-TPx-1). In contrast to Sm-p40, both of these molecules induce a more balanced Th-1/Th-2 response, and are relatively stronger antigens in C57BL/6 mice, which develop smaller egg granulomas. Importantly, Sm-p40 and Sm-PEPCK have demonstrated immunogenicity in humans. The findings in the murine model introduce the important notion that egg antigens can vary significantly in immunogenicity according to the host's genetic background. A better knowledge of the principal immunogenic egg components is necessary to determine whether the immune responses to certain antigens can serve as indicators or predictors of the form and severity of clinical disease, and to ascertain whether such responses can be manipulated for the purpose of reducing pathology.
Resumo:
A comparative study was made between sympatric isolates of Schistosoma mansoni: one from a wild rodent (R) Nectomys squamipes and another one from humans (H) isolated from a low endemic schistosomiasis transmission area in Brazil. Our purpose was to detect differences between them concerning chaetotaxy (number and pattern of distribution of the argentophilic papillae) of the cercariae by means of silver impregnation. No significant difference (x > 0.05) between isolates was noted. Nevertheless, a significant difference (x < 0.05) was observed in the cercarial index (ratio of the distance between the first and the second preacetabular papillae and the distance between the first and the second dorsal preacetabular papillae) of male and female cercariae in both isolates. Males presented a greater cercarial index than females. By means of multivariate analysis, male cercariae were distinguished from female cercariae through the following characteristics: average number of dorsal papillae on the right quadrant, average number of ventral middle papillae on the right quadrant (H isolate) and average number of dorsal middle papillae on the left quadrant (R isolate). The results suggest that R and H isolates belong to the same population that could complete its life cycle in rodent-snail-rodent fashion.
Resumo:
Eighteen clinical isolates of Trichomonas vaginalis were obtained from women who attended health centers of the Goverment of Madrid. A total of 1,848 vaginal specimens recovered during the gynaecological examination were seeded in culture tubes containing liquid Diamond medium. Pathogenicity to mice was determined after intraperitoneal inoculation of mice by quantification of mortality and gross damage to abdominal organs. As could be expected, a broad variability was obtained, being some of the isolates more virulent than the reference strain. Regarding to metronidazole susceptibility, none resistant isolate was found but different degrees of susceptibility were determined.
Resumo:
Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.
Resumo:
The objective of this study was to isolate and identify fungal species found in natural association with adults of Musca domestica. The adult insects were collected from two natural breeding grounds: hog pens and an urban sanitary landfill. The isolated fungi were identified as: Aspergillus flavus (23.8%), A. niger var. niger (14.4%), Penicillium corylophilum (21.4%), P. fellutanum (11.9%), Cladosporium cladosporoides (4.7%), Fusarium sp. (4.7%), Alternaria alternata (11.9%), Curvularia brachyspora (2.4%), Mycelia sterilia (2.4%) and the Mucorales order (2.4%).