552 resultados para Biodegradation
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The degradation of polychlorinated biphenyls (PCBs) was investigated under fermentativemethanogenic conditions for up to 60 days in the presence of anaerobic biomass from a full-scale UASB reactor. The low methane yields in the PCBs-spiked batch reactors suggested that the biomass had an inhibitory effect on the methanogenic community. Reactors containing PCBs and co-substrates (ethanol/ sodium formate) exhibited substantial PCB reductions from 0.7 to 0.2 mg mL-1 . For the Bacteria domain, the PCBs-spiked reactors were grouped with the PCB-free reactors with a similarity of 55 %, which suggested the selection of a specific population in the presence of PCBs. Three genera of bacteria were found exclusively in the PCB-spiked reactors and were identified using pyrosequencing analysis, Sedimentibacter, Tissierela and Fusibacter. Interestingly, the Sedimentibacter, which was previously correlated with the reductive dechlorination of PCBs, had the highest relative abundance in the RCS-PCB (7.4 %) and RCS-PCB-PF (12.4 %) reactors. Thus, the anaerobic sludge from the UASB reactor contains bacteria from the Firmicutes phylum that are capable of degrading PCBs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Screening the toxicity and biodegradability of petroleum hydrocarbons by a rapid colorimetric method
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In uncemented Ti6Al4V hip implants, the bone-stem interface is subjected to cyclic loading motion driven by the daily activities of the patients, which may lead to the complete failure of the implant in the long term. It may also compromise the proliferation and differentiation processes of osteoblastic cells (bone-forming cells). The main objective of this work is to approach for the first time the role of these organic materials on the bio-tribocorrosion mechanisms of cultured Ti6Al4V alloys. The colonized materials with MG63 osteoblastic-like cells were characterized through cell viability/proliferation and enzymatic activity. Tribocorrosion tests were performed under a reciprocating sliding configuration and low contact pressure. Electrochemical techniques were used to measure the corrosion kinetics of the system, under free potential conditions. All tests were performed at a controlled atmosphere. The morphology and topography of the wear scar were evaluated. The results showed that the presence of an osteoblastic cell layer on the implant surface significantly influences the tribocorrosion behavior of Ti6Al4V alloy. It was concluded that the cellular material was able to form an extra protective layer that inhibits further wear degradation of the alloy and decreases its corrosion tendency.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)