970 resultados para Bio-magnetic materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of LaxBi1-xMnO3 thin films grown on SrTiO3 substrates is reported. It is shown that these films grow epitaxially in a narrow pressure-temperature range. A detailed structural and compositional characterization of the films is performed within the growth window. The structure and the magnetization of this system are investigated. We find a clear correlation between the magnetization and the unit-cell volume that we ascribe to Bi deficiency and the resultant introduction of a mixed valence on the Mn ions. On these grounds, we show that the reduced magnetization of LaxBi1-xMnO3 thin films compared to the bulk can be explained quantitatively by a simple model, taking into account the deviation from nominal composition and the Goodenough-Kanamori-Anderson rules of magnetic interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure, magnetic response, and dielectric response of the grown epitaxial thin films of the orthorhombic phase of YMnO3 oxide on Nb:SrTiO3 (001) substrates have been measured. We have found that a substrate-induced strain produces an in-plane compression of the YMnO3 unit cell. The magnetization versus temperature curves display a significant zero-field cooling (ZFC)-field cooling hysteresis below the Nel temperature (TN 45 K). The dielectric constant increases gradually (up to 26%) below the TN and mimics the ZFC magnetization curve. We argue that these effects could be a manifestation of magnetoelectric coupling in YMnO3 thin films and that the magnetic structure of YMnO3 can be controlled by substrate selection and/or growth conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of magnetic nanoparticles with monodispere size distributions, their self assembly into ordered arrays and their magnetic behavior as a function of structural order (ferrofluids and 2D assemblies) are presented. Magnetic colloids of monodispersed, passivated, cobalt nanocrystals were produced by the rapid pyrolysis of cobalt carbonyl in solution. The size, size distribution (std. dev.< 5%) and the shape of the nanocrystals were controlled by varying the surfactant, its concentration, the reaction rate and the reaction temperature. The Co particles are defect-free single crystals with a complex cubic structure related to the beta phase of manganese (epsilon-Co). In the 2D assembly, a collective behavior was observed in the low-field susceptibility measurements where the magnetization of the zero field cooled process increases steadily and the magnetization of the field cooling process is independent the temperature. This was different from the observed behavior in a sample comprised of disordered interacting particles. A strong paramagnetic contribution appears at very low temperatures where the magnetization increases drastically after field cooling the sample. This has been attributed to the Co surfactant-particle interface since no magnetic atomic impurities are present in these samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic-field dependence of the magnetization of cylinders, disks, and spheres of pure type-I superconducting lead was investigated by means of isothermal measurements of first magnetization curves and hysteresis cycles. Depending on the geometry of the sample and the direction and intensity of the applied magnetic field, the intermediate state exhibits different irreversible features that become particularly highlighted in minor hysteresis cycles. The irreversibility is noticeably observed in cylinders and disks only when the magnetic field is parallel to the axis of revolution and is very subtle in spheres. When the magnetic field decreases from the normal state, the irreversibility appears at a temperature-dependent value whose distance to the thermodynamic critical field depends on the sample geometry. The irreversible features in the disks are altered when they are submitted to an annealing process. These results agree well with very recent high-resolution magneto-optical experiments in similar materials that were interpreted in terms of transitions between different topological structures for the flux configuration in the intermediate state. A discussion of the relative role of geometrical barriers for flux entry and exit and pinning effects as responsible for the magnetic irreversibility is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetric magnetization reversal is an unusual phenomenon in antiferromagnet/ferromagnet (AF/FM) exchange biased bilayers. We investigated this phenomenon in a simple model system experimentally and by simulation assuming inhomogeneously distributed interfacial AF moments. The results suggest that the observed asymmetry originates from the intrinsic broken symmetry of the system, which results in local incomplete domain walls parallel to the interface in reversal to negative saturation of the FM. The magneto-optical Kerr effect unambiguously confirms such an asymmetric reversal and a depth-dependent FM domain wall in accord with the magnetometry and simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present a phenomenological model which simulates very well the mag¿ netic relaxation behavior experimentally observed in small magnetic grains and single domain particles. In this model, the occurrence of quantum tunneling of magnetization below a certain temperature is taken into account. Experimental results for different materials are presented to illustrate the most important behavior deduced from our model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic, structural, and transport properties of as quenched and annealed Co10Cu90 samples have been investigated using x¿ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as¿quenched sample annealed at 450°C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as quenched samples below 600°C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin¿dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the results of magnetization and 57Fe Mössbauer spectroscopy measurements performed in the temperature range 5-300 K on composites containing iron¿oxide nanoparticles encased in polystyrene type resins. After carrying out a suitable field treatment in order to decouple the particles from the matrix, a fraction of the particles freely rotate in response to an applied magnetic field

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a differential scanning calorimeter capable of working under applied magnetic fields of up to 5 T. The calorimeter is highly sensitive and operates over the temperature range 10¿300 K. It is shown that, after a proper calibration, the system enables determination of the latent heat and entropy changes in first-order solid¿solid phase transitions. The system is particularly useful for investigating materials that exhibit the giant magnetocaloric effect arising from a magnetostructural phase transition. Data for Gd5(Si0.1Ge0.9)4 are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.