940 resultados para Bayesian belief networks
Resumo:
This paper discusses hardware design principles for long-term solar-powered wireless sensor networks. We argue that the assumptions and principles appropriate for long-term operation from primary cells are quite different from the solar power case with its abundant energy and regular charging cycles. We present data from a long-term deployment that illustrates the use of solar energy and rechargeable batteries to achieve 24x7 operation for over two years, since March 2005.
Resumo:
A large-scale, outdoor, pervasive computing system based on the Fleck hardware platform applies sensor network technology to farming. Comprising static and animal-borne mobile nodes, the system measures the state of a complex, dynamic system comprising climate, soil, pasture, and animals. This data supports prediction of the land's future state and improved management outcomes through closed-loop control. This article is part of a special issue, Building a Sensor-Rich World.
Resumo:
This paper presents research that is being conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) with the aim of investigating the use of wireless sensor networks for automated livestock monitoring and control. It is difficult to achieve practical and reliable cattle monitoring with current conventional technologies due to challenges such as large grazing areas of cattle, long time periods of data sampling, and constantly varying physical environments. Wireless sensor networks bring a new level of possibilities into this area with the potential for greatly increased spatial and temporal resolution of measurement data. CSIRO has created a wireless sensor platform for animal behaviour monitoring where we are able to observe and collect information of animals without significantly interfering with them. Based on such monitoring information, we can identify each animal's behaviour and activities successfully
Resumo:
Agriculture accounts for a significant portion of the GDP in most developed countries. However, managing farms, particularly largescale extensive farming systems, is hindered by lack of data and increasing shortage of labour. We have deployed a large heterogeneous sensor network on a working farm to explore sensor network applications that can address some of the issues identified above. Our network is solar powered and has been running for over 6 months. The current deployment consists of over 40 moisture sensors that provide soil moisture profiles at varying depths, weight sensors to compute the amount of food and water consumed by animals, electronic tag readers, up to 40 sensors that can be used to track animal movement (consisting of GPS, compass and accelerometers), and 20 sensor/actuators that can be used to apply different stimuli (audio, vibration and mild electric shock) to the animal. The static part of the network is designed for 24/7 operation and is linked to the Internet via a dedicated high-gain radio link, also solar powered. The initial goals of the deployment are to provide a testbed for sensor network research in programmability and data handling while also being a vital tool for scientists to study animal behavior. Our longer term aim is to create a management system that completely transforms the way farms are managed.
Resumo:
We consider multi-robot systems that include sensor nodes and aerial or ground robots networked together. We describe two cooperative algorithms that allow robots and sensors to enhance each other's performance. In the first algorithm, an aerial robot assists the localization of the sensors. In the second algorithm, a localized sensor network controls the navigation of an aerial robot. We present physical experiments with an flying robot and a large Mica Mote sensor network.
Resumo:
General education teachers in the Republic of Korea were investigated regarding their participation in programs to include students with disabilities in general education settings. Previous studies have shown that even general education teachers with positive attitudes towards inclusion are reluctant in practice to have students with disabilities in their classrooms. This study examines 33 Korean general education teachers from three primary schools in Seoul regarding their attitudes towards, and willingness to accommodate, the needs of a student with a disability. The results show that 41.37% of general education teachers had positive attitudes towards inclusion programs, while 55.16% were unwilling to actually participate. Quantitative data obtained through a questionnaire was supplemented by qualitative data obtained through interviews. The interviews focused on the positive and negative effects of inclusion, as well as problems in implementing inclusive education programs. The findings will be discussed in the light of previous international research and will highlight links between the age and teaching experience of general education teachers and their negative attitudes towards inclusion.
Personal epistemology in pre-service teachers : belief changes throughout a teacher education course
Resumo:
Classrooms of the 21st century are complex systems. They support diverse learners from varied contexts and function in a “messy” bricolage of policy contexts. This complexity is also evident in the nature of teaching and learning deployed in these classrooms. There is also, in current contexts, a general expectation that teachers will support students to construct, rather than simply receive knowledge. This process of constructing knowledge requires a focus on critical thinking in complex social and real world contexts (see also Elen & Clarebout, 2001; Yang, Chang & Hsu 2008). Critical thinking, which involves the identification and evaluation of multiple perspectives when making decisions, is a process of knowing – a tool of wisdom (Kuhn & Udell, 2001). Schommer-Aikens, Bird and Bakken (2010) refer to classrooms that encourage critical thinking as “epistemologically based” in which “the teacher encourages his/her students to look for connections among concepts within the text, with their prior knowledge, and with concepts found in the world beyond themselves” (p. 48).
Resumo:
In this paper, both Distributed Generators (DG) and capacitors are allocated and sized optimally for improving line loss and reliability. The objective function is composed of the investment cost of DGs and capacitors along with loss and reliability which are converted to the genuine dollar. The bus voltage and line current are considered as constraints which should be satisfied during the optimization procedure. Hybrid Particle Swarm Optimization as a heuristic based technique is used as the optimization method. The IEEE 69-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate that the lowest cost planning is found by optimizing both DGs and capacitors in distribution networks.
Resumo:
Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.
Resumo:
Objective. To provide a preliminary test of a Theory of Planned Behavior (TPB) belief-based intervention to increase adolescents’ sun protective behaviors in a high risk area, Queensland, Australia. Methods. In the period of October-November, 2007 and May-June, 2008, 80 adolescents (14.53 ± 0.69 years) were recruited from two secondary schools (one government and one private) in Queensland after obtaining student, parental, and school informed consent. Adolescents were allocated to either a control or intervention condition based on the class they attended. The intervention comprised three, one hour in-school sessions facilitated by Cancer Council Queensland employees with sessions covering the belief basis of the TPB (i.e., behavioral, normative, and control [barrier and motivator] sun-safe beliefs). Participants completed questionnaires assessing sun-safety beliefs, intentions, and behavior pre- and post-intervention. Repeated Measures Multivariate Analysis of Variance was used to test the effect of the intervention across time on these constructs. Results. Students completing the intervention reported stronger sun-safe normative and motivator beliefs and intentions and the performance of more sun-safe behaviors across time than those in the control condition. Conclusion. Strengthening beliefs about the approval of others and motivators for sun protection may encourage sun-safe cognitions and actions among adolescents.
Resumo:
RFID has been widely used in today's commercial and supply chain industry, due to the significant advantages it offers and the relatively low production cost. However, this ubiquitous technology has inherent problems in security and privacy. This calls for the development of simple, efficient and cost effective mechanisms against a variety of security threats. This paper proposes a two-step authentication protocol based on the randomized hash-lock scheme proposed by S. Weis in 2003. By introducing additional measures during the authentication process, this new protocol proves to enhance the security of RFID significantly, and protects the passive tags from almost all major attacks, including tag cloning, replay, full-disclosure, tracking, and eavesdropping. Furthermore, no significant changes to the tags is required to implement this protocol, and the low complexity level of the randomized hash-lock algorithm is retained.
Resumo:
Presentation describling a project in data intensive research in the humanities. Measuring activity of publically available data in social networks such as Blogosphere, Twitter, Flickr, YouTube
Resumo:
Robotics in mines, aerospace, underwater, everyday unstructured environments and sensor networks with communicating devices that collect data.