926 resultados para Bayesian Mixture Model, Cavalieri Method, Trapezoidal Rule


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We introduce a new method to improve Markov maps by means of a Bayesian approach. The method starts from an initial map model, wherefrom a likelihood function is defined which is regulated by a temperature-like parameter. Then, the new constraints are added by the use of Bayes rule in the prior distribution. We applied the method to the logistic map of population growth of a single species. We show that the population size is limited for all ranges of parameters, allowing thus to overcome difficulties in interpretation of the concept of carrying capacity known as the Levins paradox. © Published under licence by IOP Publishing Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In 2011, there will be an estimated 1,596,670 new cancer cases and 571,950 cancer-related deaths in the US. With the ever-increasing applications of cancer genetics in epidemiology, there is great potential to identify genetic risk factors that would help identify individuals with increased genetic susceptibility to cancer, which could be used to develop interventions or targeted therapies that could hopefully reduce cancer risk and mortality. In this dissertation, I propose to develop a new statistical method to evaluate the role of haplotypes in cancer susceptibility and development. This model will be flexible enough to handle not only haplotypes of any size, but also a variety of covariates. I will then apply this method to three cancer-related data sets (Hodgkin Disease, Glioma, and Lung Cancer). I hypothesize that there is substantial improvement in the estimation of association between haplotypes and disease, with the use of a Bayesian mathematical method to infer haplotypes that uses prior information from known genetics sources. Analysis based on haplotypes using information from publically available genetic sources generally show increased odds ratios and smaller p-values in both the Hodgkin, Glioma, and Lung data sets. For instance, the Bayesian Joint Logistic Model (BJLM) inferred haplotype TC had a substantially higher estimated effect size (OR=12.16, 95% CI = 2.47-90.1 vs. 9.24, 95% CI = 1.81-47.2) and more significant p-value (0.00044 vs. 0.008) for Hodgkin Disease compared to a traditional logistic regression approach. Also, the effect sizes of haplotypes modeled with recessive genetic effects were higher (and had more significant p-values) when analyzed with the BJLM. Full genetic models with haplotype information developed with the BJLM resulted in significantly higher discriminatory power and a significantly higher Net Reclassification Index compared to those developed with haplo.stats for lung cancer. Future analysis for this work could be to incorporate the 1000 Genomes project, which offers a larger selection of SNPs can be incorporated into the information from known genetic sources as well. Other future analysis include testing non-binary outcomes, like the levels of biomarkers that are present in lung cancer (NNK), and extending this analysis to full GWAS studies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study proposed a novel statistical method that modeled the multiple outcomes and missing data process jointly using item response theory. This method follows the "intent-to-treat" principle in clinical trials and accounts for the correlation between outcomes and missing data process. This method may provide a good solution to chronic mental disorder study. ^ The simulation study demonstrated that if the true model is the proposed model with moderate or strong correlation, ignoring the within correlation may lead to overestimate of the treatment effect and result in more type I error than specified level. Even if the within correlation is small, the performance of proposed model is as good as naïve response model. Thus, the proposed model is robust for different correlation settings if the data is generated by the proposed model.^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Early phase clinical trial designs have long been the focus of interest for clinicians and statisticians working in oncology field. There are several standard phse I and phase II designs that have been widely-implemented in medical practice. For phase I design, the most commonly used methods are 3+3 and CRM. A newly-developed Bayesian model-based mTPI design has now been used by an increasing number of hospitals and pharmaceutical companies. The advantages and disadvantages of these three top phase I designs have been discussed in my work here and their performances were compared using simulated data. It was shown that mTPI design exhibited superior performance in most scenarios in comparison with 3+3 and CRM designs. ^ The next major part of my work is proposing an innovative seamless phase I/II design that allows clinicians to conduct phase I and phase II clinical trials simultaneously. Bayesian framework was implemented throughout the whole design. The phase I portion of the design adopts mTPI method, with the addition of futility rule which monitors the efficacy performance of the tested drugs. Dose graduation rules were proposed in this design to allow doses move forward from phase I portion of the study to phase II portion without interrupting the ongoing phase I dose-finding schema. Once a dose graduated to phase II, adaptive randomization was used to randomly allocated patients into different treatment arms, with the intention of more patients being assigned to receive more promising dose(s). Again simulations were performed to compare the performance of this innovative phase I/II design with a recently published phase I/II design, together with the conventional phase I and phase II designs. The simulation results indicated that the seamless phase I/II design outperform the other two competing methods in most scenarios, with superior trial power and the fact that it requires smaller sample size. It also significantly reduces the overall study time. ^ Similar to other early phase clinical trial designs, the proposed seamless phase I/II design requires that the efficacy and safety outcomes being able to be observed in a short time frame. This limitation can be overcome by using validated surrogate marker for the efficacy and safety endpoints.^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Two probabilistic interpretations of the n-tuple recognition method are put forward in order to allow this technique to be analysed with the same Bayesian methods used in connection with other neural network models. Elementary demonstrations are then given of the use of maximum likelihood and maximum entropy methods for tuning the model parameters and assisting their interpretation. One of the models can be used to illustrate the significance of overlapping n-tuple samples with respect to correlations in the patterns.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mixture Density Networks (MDNs) are a well-established method for modelling the conditional probability density which is useful for complex multi-valued functions where regression methods (such as MLPs) fail. In this paper we extend earlier research of a regularisation method for a special case of MDNs to the general case using evidence based regularisation and we show how the Hessian of the MDN error function can be evaluated using R-propagation. The method is tested on two data sets and compared with early stopping.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Social streams have proven to be the mostup-to-date and inclusive information on cur-rent events. In this paper we propose a novelprobabilistic modelling framework, called violence detection model (VDM), which enables the identification of text containing violent content and extraction of violence-related topics over social media data. The proposed VDM model does not require any labeled corpora for training, instead, it only needs the in-corporation of word prior knowledge which captures whether a word indicates violence or not. We propose a novel approach of deriving word prior knowledge using the relative entropy measurement of words based on the in-tuition that low entropy words are indicative of semantically coherent topics and therefore more informative, while high entropy words indicates words whose usage is more topical diverse and therefore less informative. Our proposed VDM model has been evaluated on the TREC Microblog 2011 dataset to identify topics related to violence. Experimental results show that deriving word priors using our proposed relative entropy method is more effective than the widely-used information gain method. Moreover, VDM gives higher violence classification results and produces more coherent violence-related topics compared toa few competitive baselines.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The twin arginine translocation (TAT) system ferries folded proteins across the bacterial membrane. Proteins are directed into this system by the TAT signal peptide present at the amino terminus of the precursor protein, which contains the twin arginine residues that give the system its name. There are currently only two computational methods for the prediction of TAT translocated proteins from sequence. Both methods have limitations that make the creation of a new algorithm for TAT-translocated protein prediction desirable. We have developed TATPred, a new sequence-model method, based on a Nave-Bayesian network, for the prediction of TAT signal peptides. In this approach, a comprehensive range of models was tested to identify the most reliable and robust predictor. The best model comprised 12 residues: three residues prior to the twin arginines and the seven residues that follow them. We found a prediction sensitivity of 0.979 and a specificity of 0.942.