801 resultados para Balta scripta


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A report is presented of the XIIth International Workshop on Positron and Positronium Physics (Sandbjerg, Denmark, 19-21 July 2003). This workshop covered positron and positronium interactions with atoms, molecules and condensed matter systems. One key development reported was the first creation in the laboratory of low-energy antihydrogen atoms. Facets of positron-electron many-body systems were also considered, including the positronium molecule and BEC gases of positronium atoms. Aspects of the future of the field were discussed, including the development of new theoretical and experimental capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a generic transfer matrix approach for the description of the interaction of atoms possessing multiple ground state and excited state sublevels with light fields. This model allows us to treat multi-level atoms as classical scatterers in light fields modified by, in principle, arbitrarily complex optical components such as mirrors, resonators, dispersive or dichroic elements, or filters. We verify our formalism for two prototypical sub-Doppler cooling mechanisms and show that it agrees with the standard literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the effect of thermal fluctuations on a probe qubit interacting with a Bose–Einstein condensed (BEC) reservoir. The zero-temperature case was studied in our previous work (Haikka et al 2011 Phys. Rev. A 84 031602), where we proposed a method for probing the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. In this paper, we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Verification of the dynamical Casimir effect (DCE) in optical systems is still elusive due to the very demanding requirements for its experimental implementation. This typically requires very fast changes in the boundary conditions of the problem. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way for an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A "top-down" approach using a-beam lithography and a "bottom-up" one using self-assembly methods were used to fabricate ferroelelectric Pb(Zr,Ti)O-3, SrBi2Ta2O9 and BaTiO3 nanostructures with lateral sizes in the range of 30 nm to 100 nm. Switching of single sub-100 nm cells was achieved and piezoelectric hysteresis loops were recorded using a scanning force microscope working in piezoresponse mode. The piezoelectricity and its hysteresis acquired for 100 nm PZT cells demonstrate that a further decrease in lateral size under 100 nm appears to be possible and that the size effects are not fundamentally limiting on increase density of non-volatile ferroelectric memories in the Gbit range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions in five Br-like ions (Sr IV, Y V, Zr VI, Nb VII and Mo VIII) are calculated with the general-purpose relativistic atomic structure package (GRASP). Extensive configuration interaction has been included and results are presented among the lowest 31 levels of the 4s24p5, 4s24p44d and 4s4p6 configurations. Lifetimes for these levels have also been determined, although unfortunately no measurements are available with which to compare. However, recently theoretical results have been reported by Singh et al (2013 Phys. Scr. 88 035301) using the same GRASP code. But their reported data for radiative rates and lifetimes cannot be reproduced and show discrepancies of up to five orders of magnitude with the present calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results for energy levels, radiative rates and electron impact excitation (effective) collision strengths for transitions in Be-like Cl XIV, K XVI and Ge XXIX are reported. For the calculations of energy levels and radiative rates the general-purpose relativistic atomic structure package is adopted, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code is used. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 98 levels of the n ≤ 4 configurations. Furthermore, lifetimes are provided for all levels and comparisons made with available theoretical and experimental results. Resonances in the collision strengths are resolved in a fine energy mesh and averaged over a Maxwellian velocity distribution to obtain the effective collision strengths. Results obtained are listed over a wide temperature range up to 107.8 K, depending on the ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 231 levels of Ti VII. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are provided for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 231 levels, although calculations have been performed for a much larger number of levels (159 162). In addition, lifetimes for all 231 levels are listed. Comparisons are made with existing results and the accuracy of the data is assessed. In particular, the most recent calculations reported by Singh et al (2012 Can. J. Phys. 90 833) are found to be unreliable, with discrepancies for energy levels of up to 1 Ryd and for radiative rates of up to five orders of magnitude for several transitions, particularly the weaker ones. Based on several comparisons among a variety of calculations with two independent codes, as well as with the earlier results, our listed energy levels are estimated to be accurate to better than 1% (within 0.1 Ryd), whereas results for radiative rates and other related parameters should be accurate to better than 20%.