1000 resultados para BODY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth and energy budget were measured for three sizes(2.4, 11.1 and 22.5 g) of juvenile white sturgeon Acipenser transmontanus held at 18.5 degrees C and fed tubificid worms at different levels ranging from starvation to ad libitum. For each size-class, specific growth rate increased linearly with increasing ration, and conversion efficiency was highest at the maximum ration. Growth rate decreased with increasing fish size at the maximum ration, but increased with size al each restricted ration. Conversion efficiency increased with increasing ration for each size-class and was usually highest at the maximum ration. Faecal production accounted for 3.2-5.2% of food energy. The proportion of food energy lost in nitrogenous excretion decreased with increasing ration. With increases in ration, the allocation of metabolizable energy to metabolism decreased, while that to growth increased. Fish size had no significant effect on the allocation of metabolizable energy to metabolism or growth. Al the maximum ration, on average 64.9% of metabolizable energy was spent on metabolism, and 35.1% on growth. (C) 1996 The Fisheries Society of the British Isles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a solution of accurate simulation of the body effect in PD SOI analogue circuit, a simulation model of distributed body contact resistance and parasitical capacitance is presented. Based on this model, we have designed and simulated a sense amplifier that applied to V a 0.8um PD SOI 64K SRAM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and structure dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The characteristics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the coupling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD (fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is observed and the model presented in this paper is shown to be valid.