994 resultados para BIOCHEMICAL-CHARACTERIZATION
Resumo:
A novel photoactivatable analog of ovine corticotropin-releasing factor (ovine photoCRF) has been synthesized and characterized. A diazirine group, the 4-(1-azi-2,2,2-trifluoroethyl)benzoyl residue, was covalently bound to the amino terminus of ovine CRF (oCRF), which was N-terminally extended by a tyrosyl residue for radioactive labeling with 125I. Under mild conditions, photolysis yielded highly reactive carbenes, responsible for the formation of covalent bonds to the CRF receptor. Ovine photoCRF was shown to bind to the high-affinity site of the CRF receptor with a similar Kd value as oCRF. When radioactively iodinated ovine photoCRF (ovine 125I-photoCRF) was covalently linked to rat CRF receptor, type 1 (rCRFR1), permanently transfected into human embryonic kidney (HEK) 293 cells, a highly glycosylated 75-kDa protein was identified with SDS/PAGE. The specificity of ovine 125I-photoCRF was demonstrated by the finding that this analog could be displaced from the receptor by oCRF, but not other unrelated peptides such as vasoactive intestinal peptide. The observed size of the 75-kDa cross-link was in agreement with the molecular weight reported earlier for native CRFR1 from rat brain. Deglycosylation of the 75-kDa cross-link with peptide:N-glycosidase (PNGase) yielded a 46-kDa protein, in agreement with the molecular weight estimated from cDNA coding for rat CRFR1. The developed CRF analog, photoCRF, is expected to facilitate future biochemical and physiological analysis of CRF receptors and--by analogous strategies--of other peptide receptors.
Resumo:
The silver-haired bat variant of rabies virus (SHBRV) has been identified as the etiological agent of a number of recent human rabies cases in the United States that are unusual in not having been associated with any known history of conventional exposure. Comparison of the different biological and biochemical properties of isolates of this virus with those of a coyote street rabies virus (COSRV) revealed that there are unique features associated with SHBRV. In vitro studies showed that, while the susceptibility of neuroblastoma cells to infection by both viruses was similar, the infectivity of SHBRV was much higher than that of COSRV in fibroblasts (BHK-21) and epithelial cells (MA-104), particularly when these cells were kept at 34 degrees C. At this temperature, low pH-dependent fusion and cell-to-cell spread of virus is seen in BHK-21 cells infected with SHBRV but not with COSRV. It appears that SHBRV may possess an unique cellular tropism and the ability to replicate at lower temperature, allowing a more effective local replication in the dermis. This hypothesis is supported by in vivo results which showed that while SHBRV is less neurovirulent than COSRV when administered via the intramuscular or intranasal routes, both viruses are equally neuroinvasive if injected intracranially or intradermally. Consistent with the above findings, the amino acid sequences of the glycoproteins of SHBRV and COSRV were found to have substantial differences, particularly in the region that contains the putative toxic loop, which are reflected in marked differences in their antigenic composition. Nevertheless, an experimental rabies vaccine based on the Pittman Moore vaccine strain protected mice equally well from lethal doses of SHBRV and COSRV, suggesting that currently used vaccines should be effective in the postexposure prophylaxis of rabies due to SHBRV.
Resumo:
ADPglucose pyrophosphorylase (glucose-1-phosphate adenylyltransferase; ADP:alpha-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in alpha-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS in an E. coli glgC- strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides an efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity.
Resumo:
The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-dependent PDE family designated as PDE1C. This enzyme shows high affinity for cAMP and cGMP, having a Km for cAMP much lower than that of any other neuronal Ca2+/calmodulin-dependent PDE. The mRNA encoding this enzyme is highly enriched in olfactory epithelium and is not detected in six other tissues tested. However, RNase protection analyses indicate that other alternative splice variants related to this enzyme are expressed in several other tissues. Within the olfactory epithelium, this enzyme appears to be expressed exclusively in the sensory neurons. The high affinity for cAMP of this Ca2+/calmodulin-dependent PDE and the fact that its mRNA is highly concentrated in olfactory sensory neurons suggest an important role for it in a Ca(2+)-regulated olfactory signal termination.
Resumo:
VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.
Resumo:
Biochemical properties of a polyamine oxidase (PAO; EC 1.5.3.3) purified from the aquatic nitrogen-fixing fern Azolla imbricata (Roxb.) Nak. were studied. The native molecular mass of the enzyme estimated by Sephadex G 200 get filtration was 66.2 kDa. SDS-PAGE gave a single protein band corresponding to a molecular mass of 65.5 kDa. The light yellow enzyme had absorption maxima at 278, 372 and 454 nm with 1 mol FAD per mole enzyme molecule as its cofactor. The PAO was active on both the triamine Spd and the tetraamine Spm as substrates. However, it was inactive on the diamines Put and Cad. It had a pH optimum of 6.5 for both Spd and Spm. The K-m(S) for Spd and Spm were 6.71 x 10(-2) and 1.13 x 10(-1) nM, respectively. Pre-incubation with 10 mM of K+ (KCl), Ca2(+) (CaCl2) or Mg2+ (MgCl2) had no effect on PAO activity. However, 10 mM Cu2+ (CuCl2), Mn2+ (MnCl2) and Fe2+ (FeSO4) inhibited enzyme activity by 37%, 43% and 58%, respectively. The metal chelator EDTA (10 mM), the carbonyl reagent hydroxylamine (0.5 mM) and the sulfhydryl reagent p-chloro-mercuribenzoate (0.5 mM) had no effect on PAO activity. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We report the cloning and characterization in tobacco and Arabidopsis of a Vigna radiata L. (mung bean) promoter that controls the expression of VR-ACS1, an auxin-inducible ACC synthase gene. The VR-ACS1 promoter exhibits a very unusual behavior when studied in plants different from its original host, mung bean. GUS and luciferase in situ assays of transgenic plants containing VR-ACS1 promoter fusions show strong constitutive reporter gene expression throughout tobacco and Arabidopsis development. In vitro quantitative analyses show that transgenic plants harboring VR-ACS1 promoter-reporter constructs have on average 4-6 fold higher protein and activity levels of both reporter genes than plants transformed with comparable CaMV 35S promoter fusions. Similar transcript levels are present in VR-ACS1 and CaMV 35S promoter lines, suggesting that the high levels of gene product observed for the VR-ACS1 promoter are the combined result of transcriptional and translational activation. All tested deletion constructs retaining the core promoter region can drive strong constitutive promoter activity in transgenic plants. This is in contrast to mung bean, where expression of the native VR-ACS1 gene is almost undetectable in plants grown under normal conditions, but is rapidly and highly induced by a variety of stimuli. The constitutive behavior of the VR-ACS1 promoter in heterologous hosts is surprising, suggesting that the control mechanisms active in mung bean are impaired in tobacco and Arabidopsis. The 'aberrant' behavior of the VR-ACS1 promoter is further emphasized by its failure to respond to auxin and cycloheximide in heterologous hosts. VR-ACS1 promoter regulatory mechanisms seem to be different from all previously characterized auxin-inducible promoters.
Resumo:
n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3' nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds.
Resumo:
1 The L6 myocyte cell line expresses high affinity receptors for calcitonin gene-related peptide (CGRP) which are coupled to activation of adenylyl cyclase. The biochemical pharmacology of these receptors has been examined by radioligand binding or adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation. 2 In intact cells at 37 degrees C, human and rat alpha- and beta-CGRP all activated adenylyl cyclase with EC50s of about 1.5 nM. A number of CGRP analogues containing up to five amino acid substitutions showed similar potencies. In membrane binding studies at 22 degrees C in 1 mM Mg2+, the above all bound to a single site with IC50s of 0.1-0.4 nM. 3 The fragment CGRP(8-37) acted as a competitive antagonist of CGRP stimulation of adenylyl cyclase with a calculated Kd of 5 nM. The Kd determined in membrane binding assays was lower (0.5 nM). 4 The N-terminal extended human alpha-CGRP analogue Tyro-CGRP activated adenylyl cyclase and inhibited [125I]-iodohistidyl-CGRP binding less potently than human alpha-CGRP (EC50 for cyclase = 12 nM, IC50 for binding = 4 nM). 5 The pharmacological profile of the L6 CGRP receptor suggests that it most closely resembles sites on skeletal muscle, cardiac myocytes and hepatocytes. The L6 cell line should be a stable homogeneous model system in which to study CGRP mechanisms and pharmacology."
Resumo:
The role of human granulocytes in the promotion of procainamide (PA) toxicity in vitro has been studied and one of the agents responsible for DNA strand scission and cell death in human target cells has been characterized. Crude peripheral blood mononuclear cells (cPBMNs) isolated by density centrifugation, and the lymphocyte cell lines--CCRF-HSB2 and WIL-2NS--were exposed to PA, and DNA strand breaks were quantified by fluorescent analysis of DNA unwinding. Therapeutic plasma concentrations of PA (0-50 microM) caused dose-dependent cytotoxicity, determined by dye exclusion, and strand breaks in cPBMNs incubated for 3 and 1.5 hr at 37 degrees, respectively. Using 50 microM PA a five-fold increase in DNA strand breaks was observed after 1.5 hr, with significant induction of strand breaks also being observed for 10 and 25 microM concentrations. Toxicity was much reduced in lymphocyte cell lines (maximal killing = 3.0% at 50 microM PA compared with 13.2% in cPBMNs). A similar decrease in toxicity was observed where N-acetyl procainamide (NAPA) was substituted for PA (less than 50% of strand breaks at all concentrations). Further investigations showed that the presence of a contaminating granulocyte population in the cPBMN fraction was responsible for the induction of PA toxicity. Incubation of a highly enriched granulocyte population with PA for 1 hr prior to exposure to purified peripheral blood mononuclear cells (pPBMNs) led to the complete restoration of the toxic effects. The resulting cyto- and genotoxicity were not significantly different to levels observed in cPBMNs. Significantly, incubation of granulocytes with NAPA did not induce toxicity in target pPBMNs. Ultrafiltration of granulocyte supernatants led to the identification of two toxic fractions of < 3000 and > 30,000 Da. Temporal studies showed that the toxicity associated with the < 3000 Da fraction appeared during the first 10-15 min incubation with PA whereas the > 30,000 Da fraction did not display significant toxicity until the 40-60 min period. Further assessment of the nature of these agents indicated that the 30,000 Da fraction was a protein. SDS-PAGE analysis showed an inducible 17,800 Da species appearing in granulocyte supernatants after 40 min incubation with PA. Dot blot analysis indicated that tumour necrosis factor alpha (TNF alpha) was present in the > 30,000 Da fraction. Evidence that TNF alpha was the high-molecular weight species responsible for PA-induced toxicity was obtained from neutralization assays employing an anti-TNF alpha antibody.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.
Resumo:
Cell-based therapies have the potential to contribute to global healthcare, whereby the use of living cells and tissues can be used as medicinal therapies. Despite this potential, many challenges remain before the full value of this emerging field can be realized. The characterization of input material for cell-based therapy bioprocesses from multiple donors is necessary to identify and understand the potential implications of input variation on process development. In this work, we have characterized bone marrow derived human mesenchymal stem cells (BM-hMSCs) from multiple donors and discussed the implications of the measurable input variation on the development of autologous and allogeneic cell-based therapy manufacturing processes. The range of cumulative population doublings across the five BM-hMSC lines over 30 days of culture was 5.93, with an 18.2% range in colony forming efficiency at the end of the culture process and a 55.1% difference in the production of interleukin-6 between these cell lines. It has been demonstrated that this variation results in a range in the process time between these donor hMSC lines for a hypothetical product of over 13 days, creating potential batch timing issues when manufacturing products from multiple patients. All BM-hMSC donor lines demonstrated conformity to the ISCT criteria but showed a difference in cell morphology. Metabolite analysis showed that hMSCs from the different donors have a range in glucose consumption of 26.98 pmol cell−1 day−1, Lactate production of 29.45 pmol cell−1 day−1 and ammonium production of 1.35 pmol cell−1 day−1, demonstrating the extent of donor variability throughout the expansion process. Measuring informative product attributes during process development will facilitate progress towards consistent manufacturing processes, a critical step in the translation cell-based therapies.
Resumo:
Characterizing engineered human lung tissue is an important step in developing a functional tissue replacement for lung tissue repair and in vitro analysis. Small tissue constructs were grown by seeding IMR-90 fetal lung fibroblasts and adult microvascular endothelial cells onto a Polyglycolic acid (PGA) polymer template. Introducing the constructs to dynamic culture conditions inside a bioreactor facilitated three-dimensional growth seen in scanning electron microscopy images (SEM). Characterization of the resultant tissue samples was done using SEM imagery, tensile tests, and biochemical assays to quantify extra-cellular matrix (ECM) composition. Tensile tests of the engineered samples indicated an increase in the mechanical properties when compared with blank constructs. Elastin and collagen content was found to average 3.19% and 15.49% respectively in relation to total mass of the tissue samples. The presence of elastin and collagen within the constructs most likely explains the mechanical differences that we noted. These findings suggest that the necessary ECM can be established in engineered tissue constructs and that optimization of this procedure has the capacity to generate the load bearing elements required for construction of a functional lung tissue equivalent.
Resumo:
Histone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and
have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural
product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that
has been shown to possess high differential cytotoxicity towards cancer cells along with excellent
HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and
pharmacokinetic properties of largazole.
In attempts to make these improvements and furnish a more efficient biochemical probe
as well as a potential therapeutic, several largazole analogues have been designed, synthesized,
and tested for their biological activity. Three different types of analogues were prepared. First,
different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential
HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide
variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC
inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a
different prodrug strategy to modulate the pharmacokinetic properties of largazole.
Through these analogues it was shown that C2 position can be modified significantly
without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While
the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol
can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of
a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying
functional responses in vitro and in vivo.
v
Largazole is already an impressive HDAC inhibitor that shows incredible promise.
However, in order to further develop this natural product into an anti-cancer therapeutic as well as
a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity
are required. Through these studies we plan on building upon existing structure–activity
relationships to further our understanding of largazole’s mechanism of inhibition so that we may
improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that
may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of
biochemical systems.