958 resultados para BACTERIAL OXIDATION
Resumo:
Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically, the reasons for this are the lack of engineering principles in the detection chain in the bioreporters. Here, we dissect critical steps in the detection chain and illustrate how bioreporter design could be improved by mutagenizing specificity and selectivity of the sensing and regulatory proteins, by newer expression strategies and application of different signalling networks. Furthermore, we describe how redesigning bioreporter assays with respect to pollutant transport into the cells and application of other detection devices can decrease detection limits and increase the speed of detection.
Resumo:
Background a nd A ims: The prevalence of small intestinal bowel bacterial o vergrowth (SIBO) i n patients w ith irritable bowel syndrome (IBS) ranges from 43% to 78% as determined by t he lactulose hydrogen breath (LHBT) t est. Although rifaximine, a non-absorbable antibiotic, h as b een able to decrease I BS s ymptoms i n placebo-controlled r andomized trials, these results were not repeated in phase IV studies. We aimed to assess the prevalence of SIBO in an IBS cohort and to evaluate the response to rifaximin. Methods: I BS p atients f ulfilled Rome III criteria, had an absence of alarm symptoms, n ormal f ecal c alproectin, and normal e ndoscopic workup. They underwent lactulose hydrogen breath t esting (LHBT) for SIBO diagnosis. P atients with SIBO were t reated w ith rifaximine tablets f or 14 d ays. Symptoms were a ssessed by q uestionnaires before rifaximin treatment and at week 6. Results: Hundred-fifty IBS patients were enrolled (76% female, mean age 44 ± 16 years), of whom 106 (71%) were diagnosed with SIBO and consequently treated with rifaximine. Rifaximine treatment s ignificantly reduced the following symptoms as assessed by t he s ymptom q uestionnaire: bloating (5.5 ± 2.6 before vs. 3 .6 ± 2.7 after treatment, p <0.001), flatulence (5 ± 2.7 vs. 4 ± 2.7, p = 0.015), diarrhea (2.9 ± 2.4 vs. 2 ± 2.4, p = 0.005), abdominal pain (4.8 ± 2.7 vs. 3.3 ± 2.5, p <0.001) and resulted in improved overall well-being (3.9 ± 2.4 vs. 2.7 ± 2.3, p <0.001). The LHBT was repeated 2-4 weeks after rifaximine treatment in 6 5/93 (70%) patients. Eradication of SIBO was documented in 85% of all patients (55/65). Conclusions: The results o f our phase IV trial i ndicate that a high proportion of IBS p atients t ested positive f or SIBO. I BS symptoms w ere significantly diminished following a 2-week treatment with rifaximine.
Resumo:
Three novel members of the Xenopus nuclear hormone receptor superfamily have been cloned. They are related to each other and similar to the group of receptors that includes those for thyroid hormones, retinoids, and vitamin D3. Their transcriptional activity is regulated by agents causing peroxisome proliferation and carcinogenesis in rodent liver. All three Xenopus receptors activate the promoter of the acyl coenzyme A oxidase gene, which encodes the key enzyme of peroxisomal fatty acid beta-oxidation, via a cognate response element that has been identified. Therefore, peroxisome proliferators may exert their hypolipidemic effects through these receptors, which stimulate the peroxisomal degradation of fatty acids. Finally, the multiplicity of these receptors suggests the existence of hitherto unknown cellular signaling pathways for xenobiotics and putative endogenous ligands.
Resumo:
PURPOSE: To compare the efficacy of antibiotic drops placed in the conjunctival cul-de-sac to antibiotic ointment applied to the lid margin in reduction of bacterial colonization on the lid margin. METHODS: A randomized, prospective, single-masked study was conducted on 19 patients with culture-proven colonization of bacteria on the lid margins. Ophthalmic eligibility criteria included the presence of > or =50 colony-forming units/mL (CFU/mL) of bacteria on both right and left lids. Each patient received one drop of ofloxacin in one eye every night for one week, followed by one drop once a week for one month. In the same manner, each patient received bacitracin ointment (erythromycin or gentamicin ointment if lid margin bacteria were resistant to bacitracin) to the lid margin of the fellow eye. Quantitative lid cultures were taken at initial visit, one week, one month, and two months. Fifteen volunteers (30 lids) served as controls. Lid cultures were taken at initial visit, one week, and one month. RESULTS: Both antibiotic drop and ointment reduced average bacterial CFU/mL at one week and one month. Average bacterial CFU/mL reestablished to baseline values at two months. There was no statistically significant difference between antibiotic drop and ointment in reducing bacterial colonization on the lid margin. CONCLUSION: Antibiotic drops placed in the conjunctival cul-de-sac appear to be as effective as ointment applied to the lid margins in reducing bacterial colonization in patients with > or =50 CFU/mL of bacteria on the lid margins.
Resumo:
Wounding initiates a strong and largely jasmonate-dependent remodelling of the transcriptome in the leaf blades of Arabidopsis (Arabidopsis thaliana). How much control do jasmonates exert on wound-induced protein repatterning in leaves? Replicated shotgun proteomic analyses of 2.5-mm-wide leaf strips adjacent to wounds revealed 106 differentially regulated proteins. Many of these gene products have not emerged as being wound regulated in transcriptomic studies. From experiments using the jasmonic acid (JA)-deficient allene oxide synthase mutant we estimated that approximately 95% of wound-stimulated changes in protein levels were deregulated in the absence of JA. The levels of two tonoplast proteins already implicated in defense response regulation, TWO-PORE CHANNEL1 and the calcium-V-ATPase ACA4 increased on wounding, but their transcripts were not wound inducible. The data suggest new roles for jasmonate in controlling the levels of calcium-regulated pumps and transporters, proteins involved in targeted proteolysis, a putative bacterial virulence factor target, a light-dependent catalyst, and a key redox-controlled enzyme in glutathione synthesis. Extending the latter observation we found that wounding increased the proportion of oxidized glutathione in leaves, but only in plants able to synthesize JA. The oxidizing conditions generated through JA signaling near wounds help to define the cellular environment in which proteome remodelling occurs.
Resumo:
A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments
Resumo:
Bacteria are highly diverse and drive a bulk of ecosystem processes. Analysis of relationships between diversity and single specific ecosystem processes neglects the possibility that different species perform multiple functions at the same time. The degradation of dissolved organic carbon (DOC) followed by respiration is a key bacterial function that is modulated by the availability of DOC and the capability to produce extracellular enzymes. In freshwater ecosystems, biofilms are metabolic hotspots and major sites of DOC degradation. We manipulated the diversity of biofilm forming communities which were fed with DOC differing in availability. We characterized community composition using molecular fingerprinting (T-RFLP) and measured functioning as oxygen consumption rates, the conversion of DOC in the medium, bacterial abundance and the activities of five specific enzymes. Based on assays of the extracellular enzyme activity, we calculated how the likelihood of sustaining multiple functions was affected by reduced diversity. Carbon source and biofilm age were strong drivers of community functioning, and we demonstrate how the likelihood of sustaining multifunctionality decreases with decreasing diversity
Resumo:
The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness
Resumo:
Summary : Mining activities produce enormous amounts of waste material known as tailings which are composed of fine to medium size particles. These tailings often contain sulfides, which oxidation can lead to acid and metal contamination of water; therefore they need to be remediated. In this work a tailings bioremediation approach was investigated by an interdisciplinary study including geochemistry, mineralogy and microbiology. The aim of the work was to study the effect of the implementation of wetland above oxidizing tailings on the hydrogeology and the biogeochemical element cycles, and to assess the system evolution over time. To reach these goals, biogeochemical processes occurring in a marine shore tailings deposit were investigated. The studied tailings deposit is located at the Bahìa de Ite, Pacific Ocean, southern Peru, where between 1940 and 1996 the tailings were discharged from the two porphyry copper mines Cuajone and Toquepala. After the end of deposition, a remediation approach was initiated in 1997 with a wetland implementation above the oxidizing tailings. Around 90% of the tailings deposits (total 16 km2) were thus remediated, except the central delta area and some areas close to the shoreline. The multi-stable isotope study showed that the tailings were saturated with fresh water in spite of the marine setting, due to the high hydraulic gradient resulting from the wetland implementation. Submarine groundwater discharge (SGD) was the major source of SO4 2-, C1-, Na+, Fe2+, and Mn2+ input into the tailings at the original shelf-seawater interface. The geochemical study (aquatic geochemistry and X-Ray diffraction (XRD) and sequential extractions from the solid fraction) showed that iron and sulfur oxidation were the main processes in the non-remediated tailings, which showed a top a low-pH oxidation zone with strong accumulation of efflorescent salts at the surface due to capillary upward transport of heavy metals (Fe, Cu, Zn, Mn, Cd, Co, and Ni) in the arid climate. The study showed also that the implementation of the wetland resulted in very low concentrations of heavy metals in solution (mainly under the detection limit) due to the near neutral pH and more reducing conditions (100-150 mV). The heavy metals, which were taken from solution, precipitated as hydroxides and sulfides or were bound to organic matter. The bacterial community composition analysis by Terminal Restriction Fragment Length Polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes combined with a detailed statistical analysis revealed a high correlation between the bacterial distribution and the geochemical variables. Acidophilic autotrophic oxidizing bacteria were dominating the oxidizing tailings, whereas neutrophilic and heterotrophic reducing bacteria were driving the biogeochemical processes in the remediated tailings below the wetland. At the subsurface of the remediated tailings, an iron cycling was highlighted with oxidation and reduction processes due to micro-aerophilic niches provided by the plant rhizosphere in this overall reducing environment. The in situ bioremediation experiment showed that the main parameter to take into account for the effectiveness was the water table and chemistry which controls the system. The constructed remediation cells were more efficient and rapid in metal removal when saturation conditions were available. This study showed that the bioremediation by wetland implementation could be an effective and rapid treatment for some sulfidic mine tailings deposits. However, the water saturation of the tailings has to be managed on a long-term basis in order to guarantee stability. Résumé : L'activité minière produit d'énormes quantités de déchets géologiques connus sous le nom de « tailings » composées de particules de taille fine à moyenne. Ces déchets contiennent souvent des sulfures dont l'oxydation conduit à la formation d'effluents acides contaminés en métaux, d'où la nécessité d'effectuer une remédiation des sites de stockage concernés. Le but de ce travail est dans un premier temps d'étudier l'effet de la bio-remédiation d'un dépôt de tailings oxydés sur l'hydrogéologie du système et les cycles biogéochimiques des éléments et en second lieu, d'évaluer l'évolution du processus de remédiation dans le temps. Le site étudié dans ce travail est situé dans la Bahía de Ite, au sud du Pérou, au bord de l'Océan Pacifique. Les déchets miniers en question sont déposés dans un environnement marin. De 1940 à 1996, les déchets de deux mines de porphyre cuprifère - Cuajone et Toquepala - ont été acheminés sur le site via la rivière Locumba. En 1997, une première remédiation a été initiée avec la construction d'une zone humide sur les tailings. Depuis, environ 90% de la surface du dépôt (16 km2) a été traité, les parties restantes étant la zone centrale du delta du Locumba et certaines zones proches de la plage. Malgré la proximité de l'océan, les études isotopiques menées dans le cadre de ce travail ont montré que les tailings étaient saturés en eau douce. Cette saturation est due à la pression hydraulique résultant de la mise en place des zones humides. Un écoulement d'eau souterrain sous-marin a été à détecté à l'interface entre les résidus et l'ancien fond marin. En raison de la géologie locale, il constitue une source d'entrée de SO4 2-, Cl-, Na+, FeZ+, et Mn2+ dans le système. L'analyse de la géochimie aquatique, la Diffraction aux Rayons X (XRD) et l'extraction séquentielle ont montré que l'oxydation du fer et .des sulfures est le principal processus se produisant dans les déchets non remédiés. Ceci a entraîné le développement d'une zone d'oxydation à pH bas induisant une forte accumulation des sels efflorescents, conséquence de la migration capillaire des métaux lourds (Fe, Cu, Zn, Mn, Cd, Co et Ni) de la solution vers la surface dans ce climat aride. Cette étude a montré également que la construction de la zone humide a eu comme résultats une précipitation des métaux dans des phases minérales en raison du pH neutre et des conditions réductrices (100-150mV). Les métaux lourds ont précipité sous la forme d'hydroxydes et de sulfures ou sont adsorbés à la matière organique. L'analyse de la composition de la communauté bactérienne à l'aide la technique T-RFLP (Terminal Restriction Fragment Length Polymorphism) et par le clonage/séquençage des gènes de l'ARNr 16S a été combinée à une statistique détaillée. Cette dernière a révélé une forte corrélation entre la distribution de bactéries spécifiques et la géochimie : Les bactéries autotrophes acidophiles dominent dans les déchets oxydés non remédiés, tandis que des bactéries hétérotrophes neutrophiles ont mené les processus microbiens dans les déchets remédiés sous la zone humide. Sous la surface de la zone humide, nos analyses ont également mis en évidence un cycle du fer par des processus d'oxydoréduction rendus possibles par la présence de niches micro-aérées par la rhizosphère dans cet environnement réducteur. L'expérience de bio-remédiation in situ a montré que les paramètres clés qui contrôlent l'efficacité du traitement sont le niveau de la nappe aquifère et la chimie de l'eau. Les cellules de remédiation se sont montrées plus efficaces et plus rapides lorsque le système a pu être saturé en eau. Finalement, cette étude a montré que la bio-remédiation de déchets miniers par la construction de zones humides est un moyen de traitement efficace, rapide et peu coûteux. Cependant, la saturation en eau du système doit être gérée sur le long terme afin de garantir la stabilité de l'ensemble du système.
Resumo:
AIMS: To investigate if vaginal application of dequalinium chloride (DQC, Fluomizin®) is as effective as vaginal clindamycin (CLM) in the treatment of bacterial vaginosis (BV). METHODS: This was a multinational, multicenter, single-blind, randomized trial in 15 centers, including 321 women. They were randomized to either vaginal DQC tablets or vaginal CLM cream. Follow-up visits were 1 week and 1 month after treatment. Clinical cure based on Amsel's criteria was the primary outcome. Secondary outcomes were rate of treatment failures and recurrences, incidence of post-treatment vulvovaginal candidosis (VVC), lactobacillary grade (LBG), total symptom score (TSC), and safety. RESULTS: Cure rates with DQC (C1: 81.5%, C2: 79.5%) were as high as with CLM (C1: 78.4%, C2: 77.6%). Thus, the treatment with DQC had equal efficacy as CLM cream. A trend to less common post-treatment VVC in the DQC-treated women was observed (DQC: 2.5%, CLM: 7.7%; p = 0.06). Both treatments were well tolerated with no serious adverse events occurring. CONCLUSION: Vaginal DQC has been shown to be equally effective as CLM cream, to be well tolerated with no systemic safety concerns, and is therefore a valid alternative therapy for women with BV [ClinicalTrials.gov, Med380104, NCT01125410].
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.
Resumo:
Oxalate catabolism, which can have both medical and environmental implications, is performed by phylogenetically diverse bacteria. The formyl-CoA-transferase gene was chosen as a molecular marker of the oxalotrophic function. Degenerated primers were deduced from an alignment of frc gene sequences available in databases. The specificity of primers was tested on a variety of frc-containing and frc-lacking bacteria. The frc-primers were then used to develop PCR-DGGE and real-time SybrGreen PCR assays in soils containing various amounts of oxalate. Some PCR products from pure cultures and from soil samples were cloned and sequenced. Data were used to generate a phylogenetic tree showing that environmental PCR products belonged to the target physiological group. The extent of diversity visualised on DGGE pattern was higher for soil samples containing carbonate resulting from oxalate catabolism. Moreover, the amount of frc gene copies in the investigated soils was detected in the range of 1.64x10(7) to 1.75x10(8)/g of dry soil under oxalogenic tree (representing 0.5 to 1.2% of total 16S rRNA gene copies), whereas the number of frc gene copies in the reference soil was 6.4x10(6) (or 0.2% of 16S rRNA gene copies). This indicates that oxalotrophic bacteria are numerous and widespread in soils and that a relationship exists between the presence of the oxalogenic trees Milicia excelsa and Afzelia africana and the relative abundance of oxalotrophic guilds in the total bacterial communities. This is obviously related to the accomplishment of the oxalate-carbonate pathway, which explains the alkalinization and calcium carbonate accumulation occurring below these trees in an otherwise acidic soil. The molecular tools developed in this study will allow in-depth understanding of the functional implication of these bacteria on carbonate accumulation as a way of atmospheric CO(2) sequestration.
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.
Resumo:
The bacterial insertion sequence IS21 shares with many insertion sequences a two-step, reactive junction transposition pathway, for which a model is presented in this review: a reactive junction with abutted inverted repeats is first formed and subsequently integrated into the target DNA. The reactive junction occurs in IS21-IS21 tandems and IS21 minicircles. In addition, IS21 shows a unique specialization of transposition functions. By alternative translation initiation, the transposase gene codes for two products: the transposase, capable of promoting both steps of the reactive junction pathway, and the cointegrase, which only promotes the integration of reactive junctions but with higher efficiency. This review also includes a survey of the IS21 family and speculates on the possibility that other members present a similar transpositional specialization.