981 resultados para Axon morphometry
Resumo:
Intrinsic connections in the cat primary auditory field (AI) as revealed by injections of Phaseolus vulgaris leucoagglutinin (PHA-L) or biocytin, had an anisotropic and patchy distribution. Neurons, labelled retrogradely with PHA-L were concentrated along a dorsoventral stripe through the injection site and rostral to it; the spread of rostrally located neurons was greater after injections into regions of low rather than high characteristic frequencies. The intensity of retrograde labelling varied from weak and granular to very strong and Golgi-like. Out of 313 Golgi like retrogradely labelled neurons 79.6% were pyramidal, 17.2% multipolar, 2.6% bipolar, and 0.6% bitufted; 13.4% were putatively inhibitory, i.e. aspiny or sparsely spiny multipolar, or bitufted. Individual anterogradely labelled intrinsic axons were reconstructed for distances of 2 to 7 mm. Five main types were distinguished on the basis of the branching pattern and the location of synaptic specialisations. Type 1 axons travelled horizontally within layers II to VI and sent collaterals at regular intervals; boutons were only present in the terminal arborizations of these collaterals. Type 2 axons also travelled horizontally within layers II to VI and had rather short and thin collateral branches; boutons or spine-like protrusions occurred in most parts of the axon. Type 3 axons travelled obliquely through the cortex and formed a single terminal arborization, the only site where boutons were found. Type 4 axons travelled for some distance in layer I; they formed a heterogeneous group as to their collaterals and synaptic specializations. Type 5 axons travelled at the interface between layer VI and the white matter; boutons en passant, spine-like protrusions, and thin short branches with boutons en passant were frequent all along their trajectory. Thus, only some axonal types sustain the patchy pattern of intrinsic connectivity, whereas others are involved in a more diffuse connectivity.
Resumo:
Maintenance of corneal transparency is crucial for vision and depends mainly on the endothelium, a non-proliferative monolayer of cells covering the inner part of the cornea. When endothelial cell density falls below a critical threshold, the barrier and "pump" functions of the endothelium are compromised which results in corneal oedema and loss of visual acuity. The conventional treatment for such severe disorder is corneal graft. Unfortunately, there is a worldwide shortage of donor corneas, necessitating amelioration of tissue survival and storage after harvesting. Recently it was reported that the ROCK inhibitor Y-27632 promotes adhesion, inhibits apoptosis, increases the number of proliferating monkey corneal endothelial cells in vitro and enhance corneal endothelial wound healing both in vitro and in vivo in animal models. Using organ culture human cornea (N = 34), the effect of ROCK inhibitor was evaluated in vitro and ex vivo. Toxicity, corneal endothelial cell density, cell proliferation, apoptosis, cell morphometry, adhesion and wound healing process were evaluated by live/dead assay standard cell counting method, EdU labelling, Ki67, Caspase3, Zo-1 and Actin immunostaining. We demonstrated for the first time in human corneal endothelial cells ex vivo and in vitro, that ROCK inhibitor did not induce any toxicity effect and did not alter cell viability. ROCK inhibitor treatment did not induce human corneal endothelial cells proliferation. However, ROCK inhibitor significantly enhanced adhesion and wound healing. The present study shows that the selective ROCK inhibitor Y-27632 has no effect on human corneal endothelial cells proliferative capacities, but alters cellular behaviours. It induces changes in cell shape, increases cell adhesion and enhances wound healing ex vivo and in vitro. Its absence of toxicity, as demonstrated herein, is relevant for its use in human therapy.
Resumo:
Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two independent data sets. From Mayo Clinic, 73 probable AD patients and 91 cognitively normal (CN) controls completed the Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), and Auditory Verbal Learning Test (AVLT) within 3months of their scan. Baseline MRI's from the Alzheimer's disease Neuroimaging Initiative (ADNI) comprised the other data set; 113 AD, 351 MCI, and 122 CN subjects completed the MMSE and Alzheimer's Disease Assessment Scale-Cognitive subtest (ADAS-cog) and 39 AD, 92 MCI, and 32 CN ADNI subjects completed MMSE, ADAS-cog, and AVLT. Predicted and actual clinical scores were highly correlated for the MMSE, DRS, and ADAS-cog tests (P<0.0001). Training with one data set and testing with another demonstrated stability between data sets. DRS, MMSE, and ADAS-Cog correlated better than AVLT with whole brain grey matter changes associated with AD. This result underscores their utility for screening and tracking disease. RVR offers a novel way to measure interactions between structural changes and neuropsychological tests beyond that of univariate methods. In clinical practice, we envision using RVR to aid in diagnosis and predict clinical outcome.
Resumo:
We investigated how territory quality, settlement date and morphometry affected several components of yearly breeding success of a Swiss population of Savi's Warblers Locustella luscinioides. Territories occupied by males differed from unoccupied sites of similar size and location by having higher and denser reeds, a more extensive straw litter, and a thicker cover of dead sedge leaves. Territories with these characteristics were the ones first chosen by males upon spring arrival. These males, however, did not differ in morphometry from those that arrived later. Availability of suitable nesting sites; rather than food availability, appears to be an important choice criterion for territories. Early arriving males had higher breeding success than late males because of a higher mating success and more successful clutches. The positive correlation between male breeding success and territory quality was thus mediated through their common dependence on occupancy date. Female breeding success decreased with the date of first-clutch laying, mainly because late-nesting females fledged fewer broods. Breeding success in either sex did not correlate with morphometry. Our results provide clear support for territory choice by males, but not for mate or territory choice by females, and show the crucial role played by individual settlement date on many aspects of the breeding cycle of both sexes. We propose a lottery model of mate choice. arriving females obtain the best available territories even without choosing mates or territories; since males occupy territories sequentially and in order of decreasing quality, the few unpaired males available at any moment also occupy the best available territories.
Resumo:
Aquest estudi pretén aprofundir, mitjançant tècniques de neuroimatge, en la cerca de diferències volumètriques, tant en volum de substància gris com blanca, que presenten els pacients de trastorns de personalitat esquizoide i esquizotípic amb relació amb un grup control.
Resumo:
Although many studies have been carried out to verify the involvement of the peripheral nervous system (PNS) in dystrophia myotonica (DM1) patients, the results remain controversial. The generation of DM1 transgenic mice displaying the human DM1 phenotype provides a useful tool to investigate the type and incidence of structural abnormalities in the PNS. In the present study, the morphological and morphometric analysis of semi-thin sections of sciatic and sural nerves, lumbar dorsal root ganglia (DRG) and lumbar spinal cords revealed that in DM1 transgenic mice carrying 300 CTG repeats, there is no change in the number and diameter of myelinated axons compared to wild type. Only a non-significant reduction in the percentage of thin myelinated axons was detected in electron micrographs of ultra-thin sciatic nerve sections. Analysis of the number of neurons did not reveal a loss in number of either sensory neurons in the lumbar DRG or motor neurons in the lumbar spinal cord in these DM1 mice. Furthermore, in hind limb muscle sections, stained with a neurofilament antibody and alpha-bungarotoxin, the intramuscular axon arborization appeared normal in DM1 mice and undistinguishable from that in wild-type mice. Moreover, in DM1 mice, there was no irregularity in the structure or an increase in the endplate area. Also statistical analysis did not show an increase in endplate density or in the concentration of acetylcholine receptors. Altogether, these results suggest that 300 CTG repeats are not sufficient to induce axonopathy, demyelination or neuronopathies in this transgenic mouse model.
Resumo:
The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.
Resumo:
The human brainstem is a densely packed, complex but highly organised structure. It not only serves as a conduit for long projecting axons conveying motor and sensory information, but also is the location of multiple primary nuclei that control or modulate a vast array of functions, including homeostasis, consciousness, locomotion, and reflexive and emotive behaviours. Despite its importance, both in understanding normal brain function as well as neurodegenerative processes, it remains a sparsely studied structure in the neuroimaging literature. In part, this is due to the difficulties in imaging the internal architecture of the brainstem in vivo in a reliable and repeatable fashion. A modified multivariate mixture of Gaussians (mmMoG) was applied to the problem of multichannel tissue segmentation. By using quantitative magnetisation transfer and proton density maps acquired at 3 T with 0.8 mm isotropic resolution, tissue probability maps for four distinct tissue classes within the human brainstem were created. These were compared against an ex vivo fixated human brain, imaged at 0.5 mm, with excellent anatomical correspondence. These probability maps were used within SPM8 to create accurate individual subject segmentations, which were then used for further quantitative analysis. As an example, brainstem asymmetries were assessed across 34 right-handed individuals using voxel based morphometry (VBM) and tensor based morphometry (TBM), demonstrating highly significant differences within localised regions that corresponded to motor and vocalisation networks. This method may have important implications for future research into MRI biomarkers of pre-clinical neurodegenerative diseases such as Parkinson's disease.
Resumo:
Around 11.5 * 106 m3 of rock detached from the eastern slope of the Santa Cruz valley (San Juan province, Argentina) in the first fortnight of January 2005. The rockslide?debris avalanche blocked the course, resulting in the development of a lake with maximum length of around 3.5 km. The increase in the inflow rate from 47,000?74,000 m3/d between April and October to 304,000 m3/d between late October and the first fortnight of November, accelerated the growing rate of the lake. On 12 November 2005 the dam failed, releasing 24.6 * 106 m3 of water. The resulting outburst flood caused damages mainly on infrastructure, and affected the facilities of a hydropower dam which was under construction 250 km downstream from the source area. In this work we describe causes and consequences of the natural dam formation and failure, and we dynamically model the 2005 rockslide?debris avalanche with DAN3D. Additionally, as a volume ~ 24 * 106 m3of rocks still remain unstable in the slope, we use the results of the back analysis to forecast the formation of a future natural dam. We analyzed two potential scenarios: a partial slope failure of 6.5 * 106 m3 and a worst case where all the unstable volume remaining in the slope fails. The spreading of those potential events shows that a new blockage of the Santa Cruz River is likely to occur. According to their modeled morphometry and the contributing watershed upstream the blockage area, as the one of 2005, the dams would also be unstable. This study shows the importance of back and forward analysis that can be carried out to obtain critical information for land use planning, hazards mitigation, and emergency management.
Resumo:
OBJECTIVE: To detect anatomical differences in areas related to motor processing between patients with motor conversion disorder (CD) and controls. METHODS: T1-weighted 3T brain MRI data of 15 patients suffering from motor CD (nine with hemiparesis and six with paraparesis) and 25 age- and gender-matched healthy volunteers were compared using voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) analysis. RESULTS: We report significant cortical thickness (VBCT) increases in the bilateral premotor cortex of hemiparetic patients relative to controls and a trend towards increased grey matter volume (VBM) in the same region. Regression analyses showed a non-significant positive correlation between cortical thickness changes and symptom severity as well as illness duration in CD patients. CONCLUSIONS: Cortical thickness increases in premotor cortical areas of patients with hemiparetic CD provide evidence for altered brain structure in a condition with presumed normal brain anatomy. These may either represent premorbid vulnerability or a plasticity phenomenon related to the disease with the trends towards correlations with clinical variables supporting the latter.
Resumo:
In the primitively eusocial wasps, especially Polistini and Mischocyttarini tribes, the physiological condition of each individual is strongly associated with its dominance status in the colonial hierarchy. As a rule, in independent-founding wasps, female wasps are all morphologically alike, and their role is apparently quite flexible even as adults. However, some studies have shown that differences in body size can exist between reproductive and non-reproductive females. Thus, the present study aimed at detecting differences between reproductive (inseminated) and non-reproductive (uninseminated) individuals based on morphological and physiological parameters. We tape-recorded the daily behavioural repertory of six colonies of Mischocyttarus cassununga for determining the hierarchical dominance in the field, and then collected these colonies (in different cycle stages) for measuring 13 set characters, and assessing the physiological condition of each individual by inspecting their fat bodies and ovaries. Our results revealed that inseminated and uninseminated females are not significantly different in relation to body size, in spite of first group shows higher average than second in almost all measured parts. The physiological evaluation of each individual demonstrated more than one inseminated female per colony during all stages of the colony cycle, suggesting a strategic condition of this species against difficulties (predation and parasitism of the colony) in nature.
Resumo:
Termite societies are structured by individuals that can be grouped into castes and instars. The development of these instars in most species occurs in irregular patterns and sometimes is distinguished subcastes in physical systems that originate polymorphic soldiers and workers. In this study, we characterized the morphological diversity of castes of apterous in Nasutitermes corniger. We collected four colonies of N. corniger, one every three months between May 2011 and February 2012. Individuals of the nest were separated into groups: larval stages, workers and presoldiers and soldiers. A morphometric analysis was performed on individuals from each group based on head width, metatibia, antenna, and thorax length. The data were submitted to discriminant analysis to confirm different morphological types inside these groups. The apterous line of N. corniger is composed of one first larval instar and two second larval instar. The workers caste has two lines of development with four instars in a larger line and three instars in a lower line. Two morphological types were identified in presoldiers and soldiers. The pattern of castes was similar to other species of the genus, in which bifurcation into two lines of workers, one smaller and one larger occurs after the first molt.
Resumo:
Purpose of review: An overview of recent advances in structural neuroimaging and their impact on movement disorders research is presented. Recent findings: Novel developments in computational neuroanatomy and improvements in magnetic resonance image quality have brought further insight into the pathophysiology of movement disorders. Sophisticated automated techniques allow for sensitive and reliable in-vivo differentiation of phenotype/genotype related traits and their interaction even at presymptomatic stages of disease. Summary: Voxel-based morphometry consistently demonstrates well defined patterns of brain structure changes in movement disorders. Advanced stages of idiopathic Parkinson's disease are characterized by grey matter volume decreases in basal ganglia. Depending on the presence of cognitive impairment, volume changes are reported in widespread cortical and limbic areas. Atypical Parkinsonian syndromes still pose a challenge for accurate morphometry-based classification, especially in early stages of disease progression. Essential tremor has been mainly associated with thalamic and cerebellar changes. Studies on preclinical Huntington's disease show progressive loss of tissue in the caudate and cortical thinning related to distinct motor and cognitive phenotypes. Basal ganglia volume in primary dystonia reveals an interaction between genotype and phenotype such that brain structure changes are modulated by the presence of symptoms under the influence of genetic factors. Tics in Tourette's syndrome correlate with brain structure changes in limbic, motor and associative fronto-striato-parietal circuits. Computational neuroanatomy provides useful tools for in-vivo assessment of brain structure in movement disorders, allowing for accurate classification in early clinical stages as well as for monitoring therapy effects and/or disease progression.
Resumo:
Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 647-672, 2013.