928 resultados para Automobiles - Dynamics - Computer simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a discrete event simulation study to examine tenancy service performance in a shopping centre. The study aims to provide an understanding of how informal management mechanisms could enhance existing ERP systems. The research shows the potential benefits of combining the traditional strengths of ERP in providing better performance in terms of efficiency with the ability to react with flexibility to customer's requests. © 2012 SIMULATION COUNCILS, INC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The UK Police Force is required to operate communications centres under increased funding constraints. Staff represent the main cost in operating the facility and the key issue for the efficient deployment of staff, in this case call handler staff, is to try to ensure sufficient staff are available to make a timely response to customer calls when the timing of individual calls is difficult to predict. A discrete-event simulation study is presented of an investigation of a new shift pattern for call handler staff that aims to improve operational efficiency. The communications centre can be considered a specialised case of a call centre but an important issue for Police Force management is the particularly stressful nature of the work staff are involved with when responding to emergency calls. Thus decisions regarding changes to the shift system were made in the context of both attempting to improve efficiency by matching staff supply with customer demand, but also ensuring a reasonable workload pattern for staff over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis presents a theoretical and practical study of the dynamic behaviour of electromagnetic relays. After discussing the problem of solving the dynamicc equations analytically and presenting a historical survey of the earlier works in the relay and its dynamics, the simulation of a relay on the analogue computer is discussed. It is shown that the simulation may be used to obtain specific solutions to the dynamic equations. The computer analysis provides the dynamic characteristics for design purposes and may be used in the study of bouncing, rebound oscillations and stability of the armature motion. An approximate analytical solution to the two dynamic equations is given based on the assumption that the dynamic variation of the pull with the position of the armature is linear. The assumption is supported by the Computer-aided analysis and experimental results. The solution is intended to provide a basis for a rational design. A rigorous method of analysing the dynamic performance by using Ahlberg's theory is also presented. This method may be justified to be the extension of Ahlberg's theory by taking the mass and frictional damping forces into account. While calculating the armature motion mathematically, Ahlberg considers the equilibrium of two kinds of forces, namely pull and load, and disregards the mass and friction forces, whereas the present method deals with the equilibrium of all four kinds of forces. It is shown how this can be utilised to calculate the dynamic characteristics for a specific design. The utility of this method also extends to the study of stability, contact bounce and armature rebound. The magnetic circuit and other related topics which are essential to the study of relay dynamics are discussed and some necessary experimental results are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For metal and metal halide vapor lasers excited by high frequency pulsed discharge, the thermal effect mainly caused by the radial temperature distribution is of considerable importance for stable laser operation and improvement of laser output characteristics. A short survey of the obtained analytical and numerical-analytical mathematical models of the temperature profile in a high-powered He-SrBr2 laser is presented. The models are described by the steady-state heat conduction equation with mixed type nonlinear boundary conditions for the arbitrary form of the volume power density. A complete model of radial heat flow between the two tubes is established for precise calculating the inner wall temperature. The models are applied for simulating temperature profiles for newly designed laser. The author’s software prototype LasSim is used for carrying out the mathematical models and simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physics of self-organization and complexity is manifested on a variety of biological scales, from large ecosystems to the molecular level. Protein molecules exhibit characteristics of complex systems in terms of their structure, dynamics, and function. Proteins have the extraordinary ability to fold to a specific functional three-dimensional shape, starting from a random coil, in a biologically relevant time. How they accomplish this is one of the secrets of life. In this work, theoretical research into understanding this remarkable behavior is discussed. Thermodynamic and statistical mechanical tools are used in order to investigate the protein folding dynamics and stability. Theoretical analyses of the results from computer simulation of the dynamics of a four-helix bundle show that the excluded volume entropic effects are very important in protein dynamics and crucial for protein stability. The dramatic effects of changing the size of sidechains imply that a strategic placement of amino acid residues with a particular size may be an important consideration in protein engineering. Another investigation deals with modeling protein structural transitions as a phase transition. Using finite size scaling theory, the nature of unfolding transition of a four-helix bundle protein was investigated and critical exponents for the transition were calculated for various hydrophobic strengths in the core. It is found that the order of the transition changes from first to higher order as the strength of the hydrophobic interaction in the core region is significantly increased. Finally, a detailed kinetic and thermodynamic analysis was carried out in a model two-helix bundle. The connection between the structural free-energy landscape and folding kinetics was quantified. I show how simple protein engineering, by changing the hydropathy of a small number of amino acids, can enhance protein folding by significantly changing the free energy landscape so that kinetic traps are removed. The results have general applicability in protein engineering as well as understanding the underlying physical mechanisms of protein folding. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract

The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.

This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.

I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.

Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.

II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.

The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.

In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last two decades have seen a proliferation of research frameworks that emphasise the importance of understanding adaptive processes that happen at different levels. We contribute to this growing body of literature by exploring how cultural (mal)adaptive dynamics relate to multilevel social-ecological processes occurring at different scales, where the lower levels combine into new units with new organizations, functions, and emergent properties or collective behaviors. After a brief review of the concept of “cultural adaptation” from the perspective of cultural evolutionary theory, the core of the paper is constructed around the exploration of multilevel processes occurring at the temporal, spatial, social, and political scales. We do so by using insights from cultural evolutionary theory and by examining small-scale societies as case studies. In each section, we discuss the importance of the selected scale for understanding cultural adaptation and then present an example that illustrates how multilevel processes in the selected scale help explain observed patterns in the cultural adaptive process. The last section of the paper discusses the potential of modeling and computer simulation for studying multilevel processes in cultural adaptation. We conclude by highlighting how elements from cultural evolutionary theory might enrich the multilevel process discussion in resilience theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural ventilation is an efficient bioclimatic strategy, one that provides thermal comfort, healthful and cooling to the edification. However, the disregard for quality environment, the uncertainties involved in the phenomenon and the popularization of artificial climate systems are held as an excuse for those who neglect the benefits of passive cooling. The unfamiliarity with the concept may be lessened if ventilation is observed in every step of the project, especially in the initial phase in which decisions bear a great impact in the construction process. The tools available in order to quantify the impact of projected decisions consist basically of the renovation rate calculations or computer simulations of fluids, commonly dubbed CFD, which stands for Computational Fluid Dynamics , both somewhat apart from the project s execution and unable to adapt for use in parametric studies. Thus, we chose to verify, through computer simulation, the representativeness of the results with a method of simplified air reconditioning rate calculation, as well as making it more compatible with the questions relevant to the first phases of the project s process. The case object consists of a model resulting from the recommendations of the Código de Obras de Natal/ RN, customized according to the NBR 15220. The study has shown the complexity in aggregating a CFD tool to the process and the need for a method capable of generating data at the compatible rate to the flow of ideas and are discarded during the project s development. At the end of our study, we discuss the necessary concessions for the realization of simulations, the applicability and the limitations of both the tools used and the method adopted, as well as the representativeness of the results obtained

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present document deals with the optimization of shape of aerodynamic profiles -- The objective is to reduce the drag coefficient on a given profile without penalising the lift coefficient -- A set of control points defining the geometry are passed and parameterized as a B-Spline curve -- These points are modified automatically by means of CFD analysis -- A given shape is defined by an user and a valid volumetric CFD domain is constructed from this planar data and a set of user-defined parameters -- The construction process involves the usage of 2D and 3D meshing algorithms that were coupled into own- code -- The volume of air surrounding the airfoil and mesh quality are also parametrically defined -- Some standard NACA profiles were used by obtaining first its control points in order to test the algorithm -- Navier-Stokes equations were solved for turbulent, steady-state ow of compressible uids using the k-epsilon model and SIMPLE algorithm -- In order to obtain data for the optimization process an utility to extract drag and lift data from the CFD simulation was added -- After a simulation is run drag and lift data are passed to the optimization process -- A gradient-based method using the steepest descent was implemented in order to define the magnitude and direction of the displacement of each control point -- The control points and other parameters defined as the design variables are iteratively modified in order to achieve an optimum -- Preliminary results on conceptual examples show a decrease in drag and a change in geometry that obeys to aerodynamic behavior principles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tendencia mundial de administrar y operar a distancia las centrales hidroeléctricas está obligando a los expertos a replantear los estrategias de monitoreo y diagnóstico de sus máquinas -- Esto ha conducido también, a reducir el personal experto que reside in-situ y que se encarga de operar y mantener los sistemas técnicos, y además de atender cualquier eventualidad que pueda ocurrir -- Por eso, desde hace ya varios años se han venido desarrollando sistemas expertos que puedan suplir las deficiencias del recurso humano -- Pero aunque tales sistemas han alcanzado niveles interesantes de independencia, aún requieren del acompañamiento de un experto que pueda interpretar las evidencias, emitir un diagnóstico y tomar una decisión -- Un ejemplo de los aspectos que aún se deben perfeccionar, es el se las falsas alarmas que llegan a producir el efecto “cry wolf” y que terminan por inactivar el sistema -- Otra forma de enfrentar esta nueva dinámica de operación es la de subcontratar el servicio de diagnóstico técnico, que puede dar resultados aceptables, pero no siempre en el caso de centrales hidroeléctricas -- Las centrales por lo general se encuentran en sitios remotos y en ocasiones blindadas por condiciones geográficas y climatológicas por lo que no es posible reaccionar rápidamente para atender una eventualidad cuando el experto y sus instrumentos no están cerca -- Una solución que resulta conveniente es de hecho, la centralización de la experticia para los servicios de monitoreo y diagnóstico técnico, soportados por una plataforma portátil e idealmente no-invasiva, que permanezca siempre junto a las máquinas y que pueda ser consultada on-line -- De este modo una cantidad reducida de expertos tendrán acceso permanente a las variables o síntomas que definen el estado técnico de la maquinaria; ellos se encargarán de analizar las señales sintomáticas, evaluar los resultados, emitir juicios y elaborar reportes ejecutivos que finalmente llegarán a manos del administrador o persona encargada de la operación -- Esta alternativa aliviará molestias relacionadas con los procesos de monitoreo y diagnóstico: instrumentación/sensórica, cableado, acondicionamiento de señales, adquisición digital de datos, procesamiento de señales, administración y gestión de equipos, reporte de resultados, recomendaciones, etc. -- Este proyecto propone en dos etapas, el diseño de una plataforma tecnológica que pueda soportar la alternativa mencionada -- En detalle, el diseño de un sistema integrado de adquisición de datos que además de ser portátil, modular y escalable, adecuado para monitoreo de las principales variables de diagnóstico de una central hidroeléctrica; que aunque no incorpore un sistema experto, si ofrece las herramientas de análisis, diagnóstico y toma de decisiones del estado del arte

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply Agent-Based Modeling and Simulation (ABMS) to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents do offer potential for developing organizational capabilities in the future. Our multi-disciplinary research team has worked with a UK department store to collect data and capture perceptions about operations from actors within departments. Based on this case study work, we have built a simulator that we present in this paper. We then use the simulator to gather empirical evidence regarding two specific management practices: empowerment and employee development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5-7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled "The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels" (Schadzek et al., 2015) [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.