981 resultados para Arginine ammonification in mass NH4-N per unit dry mass soil
Resumo:
Seagrass meadows, one of the world's most important and productive coastal habitats, are threatened by a range of anthropogenic actions. Burial of seagrass plants due to coastal activities is one important anthropogenic pressure leading to the decline of local populations. In our study, we assessed the response of eelgrass Zostera marina to sediment burial from physiological, morphological, and population parameters. In a full factorial field experiment, burial level (5-20cm) and burial duration (4-16 weeks) were manipulated. Negative effects were visible even at the lowest burial level (5 cm) and shortest duration (4 weeks), with increasing effects over time and burial level. Buried seagrasses showed higher shoot mortality, delayed growth and flowering and lower carbohydrate storage. The observed effects will likely have an impact on next year's survival of buried plants. Our results have implications for the management of this important coastal plant.
Resumo:
The Rainbow Hydrothermal Field (36°N, Mid-Atlantic Ridge) is one of three presently known fields related to serpentinization of ultramafic rocks accompanied by formation of hydrogen- and methane rich solutions. Gas chromatographic and molecular gas chromatographic - mass spectrometric investigations of sulfide ores and sediments from this field confirmed predominantly biological nature of bitumoids related to high-temperature transformation of biomass of the hydrothermal biological community. At the same time ores of the Rainbow field contain significant amounts of compounds that are not directly related to biogenic synthesis. This fact suggests possibility of abiogenic synthesis of methane and even complex hydrocarbons during serpentinization of ultramafic rocks.
Resumo:
Based on 13 published porewater H2S and sulphate profiles the amount of H2S escaping from non-bioturbated shales varies between some few % to 45% of the amount of bacterially generated H2S. This finding permits calculation of the original organic carbon (TOCor) content of immature nonbioturbated shales using TOC and sulphur content data. In two immature non-bioturbated sequences from Hungary (Toarcian and Oligocene) the first-order correlation between HI and TOC/TOCor was found to be stronger than that between HI and TOC, indicating that sulphate reduction was the leading process both in decrease in TOC content and degradation of kerogen source potential.
Resumo:
Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.
Resumo:
A most significant finding of the ODP Leg 107 drilling campaign was the recovery of at least 56 distinct sapropel intervals in upper Pliocene to Pleistocene sediments of six sites drilled in the Tyrrhenian Sea. Except for 3 repots of disturbed organic-rich sediments - recovered in Core 201 of the Swedish Deep-Sea Expedition, in Core 2R-1,107 cm of Site 373 (Leg 13 DSDP) and at Site 373, Core 1-2,O-5 cm of DSDP Leg 42A - sapropels had previously only been described from the eastern Mediterranean and the Black Sea. Scientific deep-sea drilling in the Tyrrhenian Sea during DSDP Legs 13 and 42A apparently missed most of these deposits due to spot coring and rotary drilling techniques; high sedimentation rates may have precluded recovery by conventional gravity coring devices. The recovery of multiple layers of sapropels and sapropelic sediments in the Tyrrhenian Sea demonstrates that oceanographic conditions conducive to sapropel formation were not confined to the Black Sea and eastern Mediterranean, but occurred sporadically and possibly simultaneously in the entire Mediterranean during the Pliocene and Pleistocene. In the light of this finding, previous models of sapropel genesis may need reconsideration. In this paper, we present some initial data on the Tyrrhenian sapropels and suggest some implications of their massive occurrence in the western Mediterranean realm. We end by outlining possible causes for deposition of sapropels in an attempt to revive the interest in sapropels and their paleoceanographic significance.
Recent ostracods in surface sediment samples from Admiralty Bay, King George Island, West Antarctica
Resumo:
Ostracods from Admiralty Bay on King George Island (South Shetland Islands) represent 29 podocopid species, belonging to 19 genera, one cladocopid and six myodocopid species. They were recovered from Recent marine and/or glacio-marine sediment samples from water depths of up to 520 m. These ostracods constitute a variable assemblage, which is overall typical for the Antarctic environment. Shallow-water assemblages tend to be more variable in terms of frequencies and species richness than deep-water assemblages. The later are low in numbers and remain relatively high diversities. Overall, no linear relation between ostracod assemblage-composition and environmental features analyzed was recognized.
Resumo:
Using the sea ice proxy IP25 and phytoplankton-derived biomarkers (brassicasterol and dinosterol) Arctic sea-ice conditions were reconstructed for Marine Isotope Stage (MIS) 3 to 1 in sediment cores from the north of Barents Sea continental margin across the Central Arctic to the Southern Mendeleev Ridge. Our results suggest more extensive sea-ice cover than present-day during MIS 3, increasing sea-ice growth during MIS 2 and decreased sea-ice cover during the last deglacial. The summer ice edge sustained north of the Barents Sea even during extremely cold (i.e., Last Glacial Maximum (LGM)) as well as warm periods (i.e., Bølling-Allerød). During the LGM, the western Svalbard margin and the northern Barents Sea margin areas were characterized by high concentrations of both IP25 and phytoplankton biomarkers, interpreted as a productive ice-edge situation, caused by the inflow of warm Atlantic Water. In contrast, the LGM high Arctic proper (north of 84°N) was covered by thick permanent sea ice throughout the year with rare break up, indicated by zero or near-zero biomarker concentrations. The spring/summer sea-ice margin significantly extended southwards to the southern Lomonosov Ridge and Mendeleev Ridge during the LGM. Our proxy reconstructions are very consistent with published model results based on the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM).
Resumo:
Organic carbon, lead and cadmium contents of 20 sediments were determined and compared with the colony counts of anaerobic heterotrophic, anaerobic nitrogen fixing, chitinoclastic and cellulolytic bacteria. Organic carbon content, which is dependent on the sediment type, was positively correlated with lead and cadmium as well as with colony counts of all 4 physiological groups of bacteria. Even the sediments with the highest concentrations of 251.7 ppm Pb and 3.1 ppm Cd showed no reduction in their colony counts. From 2 different sediment sampIes with lead contents of 140 ppm and 21 ppm lead tolerance of the aerobic heterotrophic bacteria was investigated. However, no significant difference in lead tolerance of the 2 heterotrophic populations was found. Water from 6 stations was analysed for dissolved and particulate organic carbon, lead and cadmium. Dissolved lead concentrations were in the range of 0.2-0.5 µg/l and the particulate lead contents were between 0.05 and 4.3 µg/l. The concentrations of total lead for the stations off-shore were only one order of magnitude from the concentrations of the near-shore stations. The same phenomenon was observed for dissolved cadmium (0.02 - 0.25 µg/l) and particulate cadmium (0.003 - 0.15 µg/I) concentrations. Correlations between dissolved (1.6 - 10.8 mg/I) and particulate organic carbon (0.25 - 1.53 mg/I) with dissolved and particulate lead or cadmium were not found.
Resumo:
The results of studying hydrocarbons during the flood in May 2005 are discussed. The concentration of aliphatic and polycyclic aromatic hydrocarbons are shown to match their concentrations in water areas with steady input of pollutants. Weathered oil and pyrogenic compounds dominated in their composition. The geochemical barrier the Northern Dvina River-Dvina Gulf is shown to become a filter during floods and prevents pollutants from penetrating into the White Sea.
Resumo:
Pleisto-Pliocene hemipelagic and diatomaceous mud was recovered from Deep Sea Drilling Project (DSDP) Sites 474 through 481 in the Gulf of California. The organic matter is mostly marine and mainly derived from diatomaceous protoplasm. We found some continental organic matter in sediments near the bottom basalts or near dolerites (Holes 474A and 478). The organic matter in most of the samples is in an early stage of evolution.
Resumo:
The Norian Steinmergel-Keuper (SMK) represents a low-latitude cyclically-bedded playa system of the Mid-German Basin. We investigated a drilling site (core Morsleben) and sections from marginal positions. Dolomite/red mudstone beds form rhythmic alternations that were associated with varying monsoon activity. Hence, low K/Al ratios of dolomite beds suggest increased chemical weathering of the crystalline hinterland and therefore increased monsoonal rainfall. High K/Al ratios in red mudstone beds reflect increased physical weathering of the hinterlands during dryer periods. Dolomite layers reflect the lake stage (maximum monsoon) while red mudstones indicate the dry phase (minimum monsoon) of the playa cycle. We distinguished five major types of cyclic facies alternations, representing specific facies zones in the playa system. We have implemented spectrophotometry as a tool for high-resolution cyclostratigraphy. The dense sampling increment (up to 1 cm) allows for the recognition of all orbital frequencies. Sediment colour profiles reveal striking hierarchical cycles from semi-precession (SP, 99 kyr) over precession (P, 19.8 kyr) and obliquity (O, 36 kyr) to eccentricity (E1-2 109 kyr; E3, 413 kyr). A significant about 2 Myr-signal is attributed to the longer-term eccentricity E4. One monsoonal (precession) cycle includes two carbonate precipitation events. We propose that stratified mudstone and red mudstone are associated with maximum and minimum monsoon during the transition of the solstices in perihelion and aphelion, respectively. The two carbonate precipitation events were most likely created when equinoxes were in perihelion and aphelion, respectively. A sedimentary semi-precession response cycle is a novel finding for the Norian strata. The obliquity signal is attributed to incoming atmospheric moisture from the northeast of the SMK basin. The E4 cycle controls lake-level changes over long times. Apparently, E4 is responsible whether or not a threshold value is crossed. Bundles of 109 kyr and 413 kyr in red mudstones suggest a dry system with reduced monsoonal activity. In contrast, humid periods reveal thick layers of dolomite beds, indicating that during those intervals the monsoonal activity was strong enough to prevent the playa system from drying out completely.