954 resultados para Aquatic fungi
Resumo:
Faculty of Marine Sciences, Cochin University of Science and Technology
Resumo:
Faculty of Marine Sciences, Cochin University of Science and Technology
Resumo:
The present study is an investigation to address relevant chemical aspects of the three varied aquatic environments, such as mangroves, river and the estuary. The sampling locations include a thick mangrove forest with high tidal activity, a mangrove nursery with minimal disturbances and low tidal inundation, a highly polluted riverine system and an estuarine site, as reference. Nutrients and bioorganic compounds in the water column and surface sediment were estimated in an attempt to understand the regeneration properties of these different aquatic systems.Assessment of the trace metal pollution was also carried out.
Resumo:
Aquaculture has developed to become one of the fastest growing food producing sectors in the world.Today India is one among the major shrimp producing countries in the world.There are extensive and intensive shrimp culture practices. In extensive shrimp culture, shrimps are stocked at low densities (< 25 PLs m'2)in large ponds or tidal enclosures in which little or no management is exercised or possible. Farmers depend almost entirely on natural conditions in extensive cultures. Intensive shrimp culture is carried out in high densities (>200 PLs m'2). Much of the world shrimp production still comes from extensive culture.There is a growing demand for fish and marine products for human and animal consumption. This demand has led to rapid growth of aquaculture, which some times has been accompanied by ecological impacts and economic loss due to diseases. The expansion of shrimp culture always accompanies local environmental degradation and occurrence of diseases.Disease out breaks is recognised as a significant constraint to aquaculture production. Environmental factors, water quality, pollution due to effluent discharge and pathogenic invasion due to vertical and horizontal transmission are the main causes of shrimp disease out breaks. Nutritional imbalance, toxicant and other pollutants also account for the onset of diseases. pathogens include viruses, bacteria, fungi and parasites.Viruses are the most economically significant pathogens of the cultured shrimps world wide. Disease control in shrimp aquaculture should focus first on preventive measures for eliminating disease promoting factors.ln order to design prophylactic and proactive measures against shrimp diseases, it is mandatory to understand the immune make up of the cultivable species, its optimum culture conditions and the physico chemical parameters of the rearing environment. It has been proven beyond doubt that disease is an end result of complex interaction of environment, pathogen and the host animal. The aquatic environment is abounded with infectious microbes.The transmission of disease in this environment is extremely easy, especially under dense, culture conditions. Therefore, a better understanding of the immune responses of the cultured animal in relation to its environmental alterations and microbial invasions is essential indevising strategic measures against aquaculture loss due to diseases. This study accentuate the importance of proper and regular health monitoring in shrimps employing the most appropriate haematological biomarkers for application of suitable prophylactic measures in order to avoid serious health hazards in shrimp culture systems.
Resumo:
In this thesis an attempt is made to explore the potential of marine fungi for the production of chitinolytic enzymes and to recognize the ability to hydrolyse native chitin through submerged as well as solid substrate fermentation culture conditions, using wheat bran and shellfish processing waste such as ‘prawn waste’ as solid substrates. Attempt was made to isolate a potential chitinase producing fungus from marine environment and to develop an ideal bioprocess for the production ofchitolytic enzymes.Present study indicate scope for utilization of B. bassiana for industrial production of chitinase using prawn waste as solid substrate employing solid substrate fermentation.
Resumo:
Aquatic ecosystem in the south west coast of India is noted for its diversity of habitats. Very often these environments turn bluegreen when the bloom of bluegreen algae (cyanobacteria) appear consequent to eutrophication. This phenomenon occursin these habitats one after the other or simultaneously. This conspicuousness make one curious enough to know more about these nature’s gift bestowed upon mankind. While persuing the literature on the magnificent flora) it is understood that it may provide food fertilizer, chemicals and bioactive substances. These bioactive substances are likely to be involved in regulating natural populations and are potentially useful as biochemical tools and as herbicidal or biocontrol agents. The role of cyanobacteria in the aquatic food chain and contribution in abatement of heavy metals from the natural environment are well documented. Considering the manifold utilization of the flora and their significance in the food chain, the present investigation has been undertaken
Resumo:
Environmental persistence, fate and interactive effects with living organisms - beneficial or toxic - of trace elements are directly related to the physico-chemical forms in which they occur. Knowledge on the association of trace metals with different environmental compartments in an aquatic system are, therefore, essential for monitoring the trace metal pollution as well as transport, fate and bio-geochemical cycles of trace metals. This thesis is a modest attempt in assessing the trace metal levels and their behaviour in the aquatic environment of Kuttanad, an aquatic system that is severely affected by man's intervention on natural processes, by seriously evaluating the levels of trace metals in dissolved and particulate phases and also in the different chemical fractions of the sediments.
Resumo:
In the current study, the duckweed aquatic macrophyte Spirodela polyrrhiza was employed for assessing the toxicity of two wetlands in the Eloor industrial estate, Ernakulam district, Kerala, South India. The assessments were made according to OECD guidelines for testing (2006). The studies involve study of growth parameters, Growth Index, Biomass and changes in productivity. The water samples were collected from two different wetland sites at the same time. The spirodela plants were introduced into several dilutions of wetland water samples. The parameters were measured after 7 days of exposure. All samples except control affected all parameters. The results of this study emphasize the significance of duckweeds as standard and reliable testing material for biological parameters in polluted aquatic ecosystem
Resumo:
In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries
Resumo:
One of the objectives of the current investigation was to evaluate the effectiveness of Spirodela polyrhiza to remove heavy metals and other contaminants from the water samples collected from wetland sites of Eloor and Kannamaly under controlled conditions .The results obtained from the current study suggest that the test material S. polyrrhiza should be used in the biomonitoring and phytoremediation of municipal, agricultural and industrial effluents because of their simplicity, sensitivity and cost-effectiveness. The study throws light on the potential of this plant which can be used as an assessment tool in two diverse wetland in Ernakulum district. The results show the usefulness of combining physicochemical analysis with bioassays as such approach ensures better understanding of the toxicity of chemical pollutants and their influence on plant health. The results shows the suitability of Spirodela plant for surface water quality assessment as all selected parameters showed consistency with respect to water samples collected over a 3-monitoring periods. Similarly the relationship between the change in exposure period (2, 4 and 8 days) with the parameters were also studied in detail. Spirodela are consistent test material as they are homogeneous plant material; due to predominantly vegetative reproduction. New fronds are formed by clonal propagation thus, producing a population of genetically homogeneous plants. The result is small variability between treated individuals. It has been observed that phytoremediation of water samples collected from Eloor and Kannamaly using the floating plant system is a predominant method which is economic to construct, requires little maintenance and eco friendly.
Resumo:
The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.
Resumo:
Guía de hongos del Reino Unido y Europa. Cada hongo está fotografiado en su entorno natural para identificar los comestibles de los venenosos. Hay una escala de cada especie para una indicación exacta de su tamaño.
Resumo:
Este título pertenece a una serie que ofrece en profundidad una visión de las células en todo el mundo vivo, su estructura y los procesos en que se basa la vida en la Tierra. Examina cómo funcionan las células para formar la gran variedad de plantas y hongos que vemos a nuestro alrededor. Analiza la estructura de una célula vegetal, y señala las formas en que ésta difiere de una típica célula animal. Se muestra cómo se han especializado las células de las plantas para que puedan llevar a cabo diferentes funciones, desde la fotosíntesis hasta la reproducción. También explica las diferencias entre las plantas y hongos, y cómo los hongos y algas pueden unirse para formar líquenes. Tiene índice, glosario, referencias bibliográficas y un cuadro de clasificación del reino vegetal.
Resumo:
The main objective of this thesis was the integration of microstructure information in synoptic descriptors of turbulence, that reflects the mixing processes. Turbulent patches are intermittent in space and time, but they represent the dominant process for mixing. In this work, the properties of turbulent patches were considered the potential input for integrating the physical microscale measurements. The development of a method for integrating the properties of the turbulent patches required solving three main questions: a) how can we detect the turbulent patches from he microstructure measurements?; b) which are the most relevant properties of the turbulent patches?; and ) once an interval of time has been selected, what kind of synoptic parameters could better reflect the occurrence and properties of the turbulent patches? The answers to these questions were the final specific objectives of this thesis.
Resumo:
El presente estudio tiene como objetivo proporcionar una base de conocimiento sólida para la restauración ecológica de ríos, basada en la respuesta de comunidades acuáticas a cambios en la conectividad hídrica, factores medioambientales y presión antrópica. La conectividad hídrica lateral resultó ser el factor principal que estructura hábitats y comunidades acuáticas en el Ebro; mientras que la turbidez, salinidad y concentración de nutrientes fueron factores secundarios. La combinación de estos factores establece un marco ecológico que permite realizar predicciones acerca de los patrones taxonómicos y funcionales con más probabilidades de ocurrir en la llanura del Ebro. La posibilidad de que se creen nuevos humedales de forma natural en el Ebro es muy baja, mientras los que quedan están amenazados por una baja renovación del agua. El objetivo de la restauración ecológica debe por tanto consistir en re-establecer un amplio rango de condiciones hídricas, de acuerdo con el potencial sostenible del ecosistema.