955 resultados para Anti-ADN topoisomérase I


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The class B, type I scavenger receptor, SR-BI, binds high density lipoprotein (HDL) and mediates the selective uptake of HDL cholesteryl ester (CE) by cultured transfected cells. The high levels of SR-BI expression in steroidogenic cells in vivo and its regulation by tropic hormones provides support for the hypothesis that SR-BI is a physiologically relevant HDL receptor that supplies substrate cholesterol for steroid hormone synthesis. This hypothesis was tested by determining the ability of antibody directed against murine (m) SR-BI to inhibit the selective uptake of HDL CE in Y1-BS1 adrenocortical cells. Anti-mSR-BI IgG inhibited HDL CE-selective uptake by 70% and cell association of HDL particles by 50% in a dose-dependent manner. The secretion of [3H]steroids derived from HDL containing [3H]CE was inhibited by 78% by anti-mSR-BI IgG. These results establish mSR-BI as the major route for the selective uptake of HDL CE and the delivery of HDL cholesterol to the steroidogenic pathway in cultured mouse adrenal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The insulin-like growth factor I receptor (IGF-I-R) plays a critical role in transformation events. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Tumor suppressor p53 is a nuclear transcription factor that blocks cell cycle progression and induces apoptosis. p53 is the most frequently mutated gene in human cancer. Cotransfection of Saos-2 (os-teosarcoma-derived cells) and RD (rhabdomyosarcoma-derived cells) cells with IGF-I-R promoter constructs driving luciferase reporter genes and with wild-type p53 expression vectors suppressed promoter activity in a dose-dependent manner. This effect of p53 is mediated at the level of transcription and it involves interaction with TBP, the TATA box-binding component of TFIID. On the other hand, three tumor-derived mutant forms of p53 (mut 143, mut 248, and mut 273) stimulated the activity of the IGF-I-R promoter and increased the levels of IGF-I-R/luciferase fusion mRNA. These results suggest that wild-type p53 has the potential to suppress the IGF-I-R promoter in the postmitotic, fully differentiated cell, thus resulting in low levels of receptor gene expression in adult tissues. Mutant versions of p53 protein, usually associated with malignant states, can derepress the IGF-I-R promoter, with ensuing mitogenic activation by locally produced or circulating IGFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro selection of nucleic acid binding species (aptamers) is superficially similar to the immune response. Both processes produce biopolymers that can recognize targets with high affinity and specificity. While antibodies are known to recognize the sequence and conformation of protein surface features (epitopes), very little is known about the precise interactions between aptamers and their epitopes. Therefore, aptamers that could recognize a particular epitope, a peptide fragment of human immunodeficiency virus type I Rev, were selected from a random sequence RNA pool. Several of the selected RNAs could bind the free peptide more tightly than a natural RNA ligand, the Rev-binding element. In accord with the hypothesis that protein and nucleic acid binding cusps are functionally similar, interactions between aptamers and the peptide target could be disrupted by sequence substitutions. Moreover, the aptamers appeared to be able to bind peptides with different solution conformations, implying an induced fit mechanism for binding. Just as anti-peptide antibodies can sometimes recognize the corresponding epitope when presented in a protein, the anti-peptide aptamers were found to specifically bind to Rev.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reported previously that the human T-cell lymphotrophic virus type I (HTLV-I)-associated adult T-cell leukemia line HuT-102 produces a cytokine designated interleukin (IL) T that requires interleukin (IL) 2 receptor beta-subunit expression for its action. Using anti-cytokine antibodies, we demonstrated that IL-T is identical to the simultaneously described IL-15. When compared to activated monocytes, IL-15 mRNA expression was 6- to 10-fold greater in HuT-102 cells. The predominant IL-15 message from HuT-102 is a chimeric mRNA joining a segment of the R region of the long terminal repeat of HTLV-I and the 5'-untranslated region (UTR) of IL-15. Normally, by alternative splicing, this 118-nucleotide R element represents the most 5' region of several HTLV-I transcripts including tax, rex, and env. The introduction of the R element eliminated over 200 nucleotides of the IL-15 5'-UTR, including 8 of 10 upstream AUGs that are present in normal IL-15 messages. On analysis of the 5'-UTR of normal IL-15, we demonstrated that the presence of these 10 upstream AUGs interferes with IL-15 mRNA translation. Thus, IL-15 synthesis by the adult T-cell leukemia line HuT- 102 involves an increase in IL-15 mRNA transcription and translation secondary to the production of an HTLV-I R element fusion message that lacks many upstream AUGs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B1(dsFv)-PE33 is a recombinant immunotoxin composed of a mutant form of Pseudomonas exotoxin (PE) that does not need proteolytic activation and a disulfide-stabilized Fv fragment of the anti-Lewis(y) monoclonal antibody B1, which recognizes a carbohydrate epitope on human carcinoma cells. In this molecule, amino acids 1-279 of PE are deleted and domain Ib (amino acids 365-394) is replaced by the heavy chain variable region (VH) domain of monoclonal antibody B1. The light chain (VL) domain is connected to the VH domain by a disulfide bond. This recombinant toxin, termed B1(dsFv)-PE33, does not require proteolytic activation and it is smaller than other immunotoxins directed at Lewis(y), all of which require proteolytic activation. Furthermore, it is more cytotoxic to antigen-positive cell lines. B1(dsFv)-PE38 has the highest antitumor activity of anti-Lewis(y) immunotoxins previously constructed. B1(dsFv)-PE33 caused complete regression of tumors when given at 12 micrograms/kg (200 pmol/kg) every other day for three doses, whereas B1(dsFv)-PE38 did not cause regressions at 13 micrograms/kg (200 pmol/kg). By bypassing the need for proteolytic activation and decreasing molecular size we have enlarged the therapeutic window for the treatment of human cancers growing in mice, so that complete remissions are observed at 2.5% of the LD50.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural changes in the retinal chromophore during the formation of the bathorhodopsin intermediate (bathoRT) in the room-temperature rhodopsin (RhRT) photosequence (i.e., vision) are examined using picosecond time-resolved coherent anti-Stokes Raman scattering. Specifically, the retinal structure assignable to bathoRT following 8-ps excitation of RhRT is measured via vibrational Raman spectroscopy at a 200-ps time delay where the only intermediate present is bathoRT. Significant differences are observed between the C=C stretching frequencies of the retinal chromophore at low temperature where bathorhodopsin is stabilized and at room temperature where bathorhodopsin is a transient species in the RhRT photosequence. These vibrational data are discussed in terms of the formation of bathoRT, an important step in the energy storage/transduction mechanism of RhRT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IFNAR chain of the type I interferon (IFN) receptor (IFNIR) undergoes rapid ligand-dependent tyrosine phosphorylation and acts as a species-specific transducer for type I IFN action. Using the vaccinia/T7 expression system to amplify IFNAR expression, we found that human HeLa-S3 cells transiently express high levels of cell surface IFNAR chains (approximately 250,000 chains per cell). Metabolic labeling and immunoblot analysis of transfected HeLa cells show that the IFNAR chain is initially detected as 65-kDa and 98-kDa precursors, and then as the 130-kDa mature protein. Due to variation in N-glycosylation, the apparent molecular mass of the mature IFNAR chain varies from 105 to 135 kDa in different cells. IFNIR structure was characterized in various human cell lines by analyzing 125I-labeled IFN cross-linked complexes recognized by various antibodies against IFNIR subunits and JAK protein-tyrosine kinases. Precipitation of cross-linked material from Daudi cells with anti-IFNAR antibodies showed that IFNAR was present in a 240-kDa complex. Precipitation of cross-linked material from U937 cells with anti-TYK2 sera revealed a 240-kDa complex, which apparently did not contain IFNAR and was not present in IFN-resistant HEC1B cells. The tyrosine phosphorylation and down-regulation of the IFNAR chain were induced by type I IFN in several human cell lines of diverse origins but not in HEC1B cells. However, of type I IFNs, IFN-beta uniquely induced the tyrosine phosphorylation of a 105-kDa protein associated with the IFNAR chain in two lymphoblastoid cell lines (Daudi and U266), demonstrating the specificity of transmembrane signaling for IFN-beta and IFN-alpha through the IFNAR chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine suppressor T-cell hybridoma cells (231F1) secrete not only bioactive glycosylation-inhibiting factor (GIF) but also an inactive peptide comparable to bioactive GIF peptide in its molecular size and reactivity with anti-GIF; the amino acid sequence of the inactive peptide is identical to that of the bioactive homologue. The inactive GIF peptide in culture supernatant of both the 231F1 cells and a stable transfectant of human GIF cDNA in the murine suppressor T hybridoma selectively bound to Affi-Gel 10, whereas bioactive GIF peptides from the same sources failed to bind to the gel. The inactive cytosolic human GIF from the stable transfectant and Escherichia coli-derived recombinant human GIF also had affinity for Affi-Gel 10. Both the bioactive murine GIF peptide from the suppressor T hybridoma and bioactive recombinant human GIF from the stable transfectant bound to the anti-I-J monoclonal antibody H6 coupled to Affi-Gel. However, bioactive hGIF produced by a stable transfectant of human GIF cDNA in BMT10 cells failed to be retained in H6-coupled Affi-Gel. These results indicate that the I-J specificity is determined by the cell source of the GIF peptide and that the I-J determinant recognized by monoclonal antibody H6 does not represent a part of the primary amino acid sequence of GIF. It appears that the epitope is generated by a posttranslational modification of the peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HS1 protein is one of the major substrates of non-receptor-type protein-tyrosine kinases and is phosphorylated immediately after crosslinking of the surface IgM on B cells. The mouse B-lymphoma cell line WEHI-231 is known to undergo apoptosis upon crosslinking of surface IgM by anti-IgM antibodies. Variants of WEHI-231 that were resistant to anti-IgM-induced apoptosis expressed dramatically reduced levels of HS1 protein. Expression of the human HS1 protein from an expression vector introduced into one of the variant cell lines restored the sensitivity of the cells to apoptosis induced by surface IgM crosslinking. These results suggest that HS1 protein plays a crucial role in the B-cell antigen receptor-mediated signal transduction pathway that leads to apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have characterized the transmembrane signaling events initiated after T-cell antigen receptor recognition of major histocompatibility complex (MHC)-bound peptides. Yet, little is known about signal transduction from a set of MHC class I recognizing receptors on natural killer (NK) cells whose ligation dramatically inhibits NK cell-mediated killing. In this study we evaluated the influence of MHC recognition on the proximal signaling events in NK cells binding tumor targets. We utilized two experimental models where NK cell-mediated cytotoxicity was fully inhibited by the recognition of specific MHC class I molecules. NK cell binding to either class I-deficient or class I-transfected target cells initiated rapid protein tyrosine kinase activation. In contrast, whereas NK cell binding to class I-deficient targets led to inositol phosphate release and increased intracellular free calcium ([Ca2+]i), NK recognition of class I-bearing targets did not induce the activation of these phospholipase C-dependent signaling events. The recognition of class I by NK cells clearly had a negative regulatory effect since blocking this interaction using anti-class I F(ab')2 fragments increased inositol 1,4,5-trisphosphate release and [Ca2+]i and increased the lysis of the targets. These results suggest that one of the mechanisms by which NK cell recognition of specific MHC class I molecules can block the development of cell-mediated cytotoxicity is by inhibiting specific critical signaling events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion phage libraries expressing single-chain Fv antibodies were constructed from the peripheral blood lymphocytes of two melanoma patients who had been immunized with autologous melanoma cells transduced the gamma-interferon gene to enhance immunogenicity, in a trial conducted at another institution. Anti-melanoma antibodies were selected from each library by panning the phage against live cultures of the autologous tumor. After two or three rounds of panning, clones of the phage were tested by ELISA for binding to the autologous tumor cells; > 90% of the clones tested showed a strong ELISA reaction, demonstrating the effectiveness of the panning procedure for selecting antimelanoma antibodies. The panned phage population was extensively absorbed against normal melanocytes to enrich for antibodies that react with melanoma cells but not with melanocytes. The unabsorbed phage were cloned, and the specificities of the expressed antibodies were individually tested by ELISA with a panel of cultured human cells. The first tests were done with normal endothelial and fibroblast cells to identify antibodies that do not react, or react weakly, with two normal cell types, indicating some degree of specificity for melanoma cells. The proportion of phage clones expressing such antibodies was approximately 1%. Those phage were further tested by ELISA with melanocytes, several melanoma lines, and eight other tumor lines, including a glioma line derived from glial cells that share a common lineage with melanocytes. The ELISA tests identified three classes of anti-melanoma antibodies, as follows: (i) a melanoma-specific class that reacts almost exclusively with the melanoma lines; (ii) a tumor-specific class that reacts with melanoma and other tumor lines but does not react with the normal melanocyte, endothelial and fibroblast cells; and (iii) a lineage-specific class that reacts with the melanoma lines, melanocytes, and the glioma line but does not react with the other lines. These are rare classes from the immunized patients' repertoires of anti-melanoma antibodies, most of which are relatively nonspecific anti-self antibodies. The melanoma-specific class was isolated from one patient, and the lineage-specific class was isolated from the other patient, indicating that different patients can have markedly different responses to the same immunization protocol. The procedures described here can be used to screen the antibody repertoire of any person with cancer, providing access to an enormous untapped pool of human monoclonal anti-tumor antibodies with clinical and research potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2Ld-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8+ T cells.