469 resultados para Ancestry
Resumo:
Currently there is no general method to study the impact of population admixture within families on the assumptions of random mating and consequently, Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE) and on the inference obtained from traditional linkage analysis. ^ First, through simulation, the effect of admixture of two populations on the log of the odds (LOD) score was assessed, using Prostate Cancer as the typical disease model. Comparisons between simulated mixed and homogeneous families were performed. LOD scores under both models of admixture (within families and within a data set of homogeneous families) were closest to the homogeneous family scores of the population having the highest mixing proportion. Random sampling of families or ascertainment of families with disease affection status did not affect this observation, nor did the mode of inheritance (dominant/recessive) or sample size. ^ Second, after establishing the effect of admixture on the LOD score and inference for linkage, the presence of induced disequilibria by population admixture within families was studied and an adjustment procedure was developed. The adjustment did not force all disequilibria to disappear but because the families were adjusted for the population admixture, those replicates where the disequilibria exist are no longer affected by the disequilibria in terms of maximization for linkage. Furthermore, the adjustment was able to exclude uninformative families or families that had such a high departure from HWE and/or LE that their LOD scores were not reliable. ^ Together these observations imply that the presence of families of mixed population ancestry impacts linkage analysis in terms of the LOD score and the estimate of the recombination fraction. ^
Resumo:
The ventricular system is a critical component of the central nervous system (CNS) that is formed early in the developmental stages and remains functional through the lifetime. Changes in the ventricular system can be easily discerned via neuroimaging procedures and most of the time it reflects changes in the physiology of the CNS. In this study we attempted to identify specific genes associated with variation in ventricular volume in humans. Methods. We conducted a genome wide association (GWA) analysis of the volume of the lateral ventricles among 1605 individuals of European ancestry from two community based cohorts, the Genetics of Microangiopathic Brain Injury (GMBI; N=814) and Atherosclerosis Risk in Communities (ARIC; N=791). Significant findings from the analysis were tested for replication in both the cohorts and then meta-analyzed to get an estimate of overall significance. Results. In our GWA analyses, no single nucleotide polymorphism (SNP) reached a genome-wide significance of p<10−8. There were 25 SNPs in GMBI and 9 SNPs in ARIC that reached a threshold of p<10 −5. However, none of the top SNPs from each cohort were replicated in the other. In the meta-analysis, no SNP reached the genome-wide threshold of 5×10−8, but we identified five novel SNPs associated with variation in ventricular volume at the p<10 −5 level. Strongest association was for rs2112536 in an intergenic region on chromosome 5q33 (Pmeta= 8.46×10−7 ). The remaining four SNPs were located on chromosome 3q23 encompassing the gene for Calsyntenin-2 (CLSTN2). The SNPs with strongest association in this region were rs17338555 (Pmeta= 5.28×10 −6), rs9812091 (Pmeta= 5.89×10−6 ), rs9812283 (Pmeta= 5.97×10−6) and rs9833213 (Pmeta= 6.96×10−6). Conclusions. This GWA study of ventricular volumes in the community-based cohorts of European descent identifies potential locus on chromosomes 3 and 5. Further characterization of these loci may provide insights into pathophysiology of ventricular involvement in various neurological diseases.^
Resumo:
Pancreatic cancer is the 4th most common cause for cancer death in the United States, accompanied by less than 5% five-year survival rate based on current treatments, particularly because it is usually detected at a late stage. Identifying a high-risk population to launch an effective preventive strategy and intervention to control this highly lethal disease is desperately needed. The genetic etiology of pancreatic cancer has not been well profiled. We hypothesized that unidentified genetic variants by previous genome-wide association study (GWAS) for pancreatic cancer, due to stringent statistical threshold or missing interaction analysis, may be unveiled using alternative approaches. To achieve this aim, we explored genetic susceptibility to pancreatic cancer in terms of marginal associations of pathway and genes, as well as their interactions with risk factors. We conducted pathway- and gene-based analysis using GWAS data from 3141 pancreatic cancer patients and 3367 controls with European ancestry. Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the logistic kernel machine (LKM) test, we analyzed 17906 genes defined by University of California Santa Cruz (UCSC) database. Using the likelihood ratio test (LRT) in a logistic regression model, we analyzed 177 pathways and 17906 genes for interactions with risk factors in 2028 pancreatic cancer patients and 2109 controls with European ancestry. After adjusting for multiple comparisons, six pathways were marginally associated with risk of pancreatic cancer ( P < 0.00025): Fc epsilon RI signaling, maturity onset diabetes of the young, neuroactive ligand-receptor interaction, long-term depression (Ps < 0.0002), and the olfactory transduction and vascular smooth muscle contraction pathways (P = 0.0002; Nine genes were marginally associated with pancreatic cancer risk (P < 2.62 × 10−5), including five reported genes (ABO, HNF1A, CLPTM1L, SHH and MYC), as well as four novel genes (OR13C4, OR 13C3, KCNA6 and HNF4 G); three pathways significantly interacted with risk factors on modifying the risk of pancreatic cancer (P < 2.82 × 10−4): chemokine signaling pathway with obesity ( P < 1.43 × 10−4), calcium signaling pathway (P < 2.27 × 10−4) and MAPK signaling pathway with diabetes (P < 2.77 × 10−4). However, none of the 17906 genes tested for interactions survived the multiple comparisons corrections. In summary, our current GWAS study unveiled unidentified genetic susceptibility to pancreatic cancer using alternative methods. These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer, once confirmed, will shed promising light on the prevention and treatment of this disease. ^
Resumo:
En el marco de los proyectos de investigación llevados adelante desde la cátedra Sociología de la Salud, de la Facultad de Odontología de la UNCuyo, se deriva, entre otras, una problemática que llamó la atención a quienes ven la salud desde una mirada sociológica. El interés reside en la organización comunitaria y la tenencia de la tierra de los pueblos originarios de la región de cuyo, los Huarpes. La zona de referencia se encuentra ubicada en el noreste de la provincia de Mendoza. Se busca un primer acercamiento a este tema, debido a su extensión, para dar a conocer algo que en principio se invisibiliza. Se enfoca la discusión bajo el concepto de “interculturalidad", para tratar de comprender a esta comunidad, que en pocos años logró reencontrarse y organizarse. Su objetivo es la recuperación de la tierra en términos comunitarios y su ancestralidad cultural.
Resumo:
A menudo los científicos secuencian el ADN de un gran número de personas con el objetivo de determinar qué genes se asocian con determinadas enfermedades. Esto permite meóon del genoma humano. El precio de un perfil genómico completo se ha posicionado por debajo de los 200 dólares y este servicio lo ofrecen muchas compañías, la mayor parte localizadas en EEUU. Como consecuencia, en unos pocos a~nos la mayoría de las personas procedentes de los países desarrollados tendrán los medios para tener su ADN secuenciado. Alrededor del 0.5% del ADN de cada persona (que corresponde a varios millones de nucleótidos) es diferente del genoma de referencia debido a variaciones genéticas. Así que el genoma contiene información altamente sensible y personal y representa la identidad biológica óon sobre el entorno o estilo de vida de uno (a menudo facilmente obtenible de las redes sociales), sería posible inferir el fenotipo del individuo. Multiples GWAS (Genome Wide Association Studies) realizados en los últimos a~nos muestran que la susceptibilidad de un paciente a tener una enfermedad en particular, como el Alzheimer, cáncer o esquizofrenia, puede ser predicha parcialmente a partir de conjuntos de sus SNP (Single Nucleotide Polimorphism). Estos resultados pueden ser usados para medicina genómica personalizada (facilitando los tratamientos preventivos y diagnósticos), tests de paternidad genéticos y tests de compatibilidad genética para averiguar a qué enfermedades pueden ser susceptibles los descendientes. Estos son algunos de los beneficios que podemos obtener usando la información genética, pero si esta información no es protegida puede ser usada para investigaciones criminales y por compañías aseguradoras. Este hecho podría llevar a discriminaci ón genética. Por lo que podemos concluir que la privacidad genómica es fundamental por el hecho de que contiene información sobre nuestra herencia étnica, nuestra predisposición a múltiples condiciones físicas y mentales, al igual que otras características fenotópicas, ancestros, hermanos y progenitores, pues los genomas de cualquier par de individuos relacionados son idénticos al 99.9%, contrastando con el 99.5% de dos personas aleatorias. La legislación actual no proporciona suficiente información técnica sobre como almacenar y procesar de forma segura los genomas digitalizados, por lo tanto, es necesaria una legislación mas restrictiva ---ABSTRACT---Scientists typically sequence DNA from large numbers of people in order to determine genes associated with particular diseases. This allows to improve the modern healthcare and to provide a better understanding of the human genome. The price of a complete genome profile has plummeted below $200 and this service is ofered by a number of companies, most of them located in the USA. Therefore, in a few years, most individuals in developed countries will have the means of having their genomes sequenced. Around 0.5% of each person's DNA (which corresponds to several millions of nucleotides) is diferent from the reference genome, owing to genetic variations. Thus, the genome contains highly personal and sensitive information, and it represents our ultimate biological identity. By combining genomic data with information about one's environment or lifestyle (often easily obtainable from social networks), could make it possible to infer the individual's phenotype. Multiple Genome Wide Association Studies (GWAS) performed in recent years have shown that a patient's susceptibility to particular diseases, such as Alzheimer's, cancer, or schizophrenia, can be partially predicted from sets of his SNPs. This results can be used for personalized genomic medicine (facilitating preventive treatment and diagnosis), genetic paternity tests, ancestry and genealogical testing, and genetic compatibility tests in order to have knowledge about which deseases would the descendant be susceptible to. These are some of the betefts we can obtain using genoma information, but if this information is not protected it can be used for criminal investigations and insurance purposes. Such issues could lead to genetic discrimination. So we can conclude that genomic privacy is fundamental due to the fact that genome contains information about our ethnic heritage, predisposition to numerous physical and mental health conditions, as well as other phenotypic traits, and ancestors, siblings, and progeny, since genomes of any two closely related individuals are 99.9% identical, in contrast with 99.5%, for two random people. The current legislation does not ofer suficient technical information about safe and secure ways of storing and processing digitized genomes, therefore, there is need for more restrictive legislation.
Resumo:
Immigration is an important force shaping the social structure, evolution, and genetics of populations. A statistical method is presented that uses multilocus genotypes to identify individuals who are immigrants, or have recent immigrant ancestry. The method is appropriate for use with allozymes, microsatellites, or restriction fragment length polymorphisms (RFLPs) and assumes linkage equilibrium among loci. Potential applications include studies of dispersal among natural populations of animals and plants, human evolutionary studies, and typing zoo animals of unknown origin (for use in captive breeding programs). The method is illustrated by analyzing RFLP genotypes in samples of humans from Australian, Japanese, New Guinean, and Senegalese populations. The test has power to detect immigrant ancestors, for these data, up to two generations in the past even though the overall differentiation of allele frequencies among populations is low.
Resumo:
Homing endonuclease genes show super-Mendelian inheritance, which allows them to spread in populations even when they are of no benefit to the host organism. To test the idea that regular horizontal transmission is necessary for the long-term persistence of these genes, we surveyed 20 species of yeasts for the ω-homing endonuclease gene and associated group I intron. The status of ω could be categorized into three states (functional, nonfunctional, or absent), and status was not clustered on the host phylogeny. Moreover, the phylogeny of ω differed significantly from that of the host, strong evidence of horizontal transmission. Further analyses indicate that horizontal transmission is more common than transposition, and that it occurs preferentially between closely related species. Parsimony analysis and coalescent theory suggest that there have been 15 horizontal transmission events in the ancestry of our yeast species, through simulations indicate that this value is probably an underestimate. Overall, the data support a cyclical model of invasion, degeneration, and loss, followed by reinvasion, and each of these transitions is estimated to occur about once every 2 million years. The data are thus consistent with the idea that frequent horizontal transmission is necessary for the long-term persistence of homing endonuclease genes, and further, that this requirement limits these genes to organisms with easily accessible germ lines. The data also show that mitochondrial DNA sequences are transferred intact between yeast species; if other genes do not show such high levels of horizontal transmission, it would be due to lack of selection, rather than lack of opportunity.
Resumo:
The prevalence of woody species in oceanic islands has attracted the attention of evolutionary biologists for more than a century. We used a phylogeny based on sequences of the internal-transcribed spacer region of nuclear ribosomal DNA to trace the evolution of woodiness in Pericallis (Asteraceae: Senecioneae), a genus endemic to the Macaronesian archipelagos of the Azores, Madeira, and Canaries. Our results show that woodiness in Pericallis originated independently at least twice in these islands, further weakening some previous hypotheses concerning the value of this character for tracing the continental ancestry of island endemics. The same data suggest that the origin of woodiness is correlated with ecological shifts from open to species-rich habitats and that the ancestor of Pericallis was an herbaceous species adapted to marginal habitats of the laurel forest. Our results also support Pericallis as closely related to New World genera of the tribe Senecioneae.
Resumo:
The reason that the indefinite exponential increase in the number of one’s ancestors does not take place is found in the law of sibling interference, which can be expressed by the following simple equation:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\begin{matrix}{\mathit{N}}_{{\mathit{n}}} \enskip & \\ {\mathit{{\blacksquare}}} \enskip & \\ {\mathit{ASZ}} \enskip & \end{matrix} {\mathrm{\hspace{.167em}{\times}\hspace{.167em}2\hspace{.167em}=\hspace{.167em}}}{\mathit{N_{n+1},}}\end{equation*}\end{document} where Nn is the number of ancestors in the nth generation, ASZ is the average sibling size of these ancestors, and Nn+1 is the number of ancestors in the next older generation (n + 1). Accordingly, the exponential increase in the number of one’s ancestors is an initial anomaly that occurs while ASZ remains at 1. Once ASZ begins to exceed 1, the rate of increase in the number of ancestors is progressively curtailed, falling further and further behind the exponential increase rate. Eventually, ASZ reaches 2, and at that point, the number of ancestors stops increasing for two generations. These two generations, named AN SA and AN SA + 1, are the most critical in the ancestry, for one’s ancestors at that point come to represent all the progeny-produced adults of the entire ancestral population. Thereafter, the fate of one’s ancestors becomes the fate of the entire population. If the population to which one belongs is a successful, slowly expanding one, the number of ancestors would slowly decline as you move toward the remote past. This is because ABZ would exceed 2. Only when ABZ is less than 2 would the number of ancestors increase beyond the AN SA and AN SA + 1 generations. Since the above is an indication of a failing population on the way to extinction, there had to be the previous AN SA involving a far greater number of individuals for such a population. Simulations indicated that for a member of a continuously successful population, the AN SA ancestors might have numbered as many as 5.2 million, the AN SA generation being the 28th generation in the past. However, because of the law of increasingly irrelevant remote ancestors, only a very small fraction of the AN SA ancestors would have left genetic traces in the genome of each descendant of today.
Resumo:
We report DNA and predicted protein sequence similarities, implying homology, among genes of double-stranded DNA (dsDNA) bacteriophages and prophages spanning a broad phylogenetic range of host bacteria. The sequence matches reported here establish genetic connections, not always direct, among the lambdoid phages of Escherichia coli, phage φC31 of Streptomyces, phages of Mycobacterium, a previously unrecognized cryptic prophage, φflu, in the Haemophilus influenzae genome, and two small prophage-like elements, φRv1 and φRv2, in the genome of Mycobacterium tuberculosis. The results imply that these phage genes, and very possibly all of the dsDNA tailed phages, share common ancestry. We propose a model for the genetic structure and dynamics of the global phage population in which all dsDNA phage genomes are mosaics with access, by horizontal exchange, to a large common genetic pool but in which access to the gene pool is not uniform for all phage.
Resumo:
Paired Ig-like receptors (PIR) that can reciprocally modulate cellular activation have been described in mammals. In the present study, we searched expressed sequence tag databases for PIR relatives to identify chicken expressed sequence tags predictive of ≈25% amino acid identity to mouse PIR. Rapid amplification of cDNA ends (RACE)-PCR extension of expressed sequence-tag sequences using chicken splenic cDNA as a template yielded two distinct cDNAs, the sequence analysis of which predicted protein products with related extracellular Ig-like domains. Chicken Ig-like receptor (CHIR)-A was characterized by its transmembrane segment with a positively charged histidine residue and short cytoplasmic tail, thereby identifying CHIR-A as a candidate-activating receptor. Conversely, CHIR-B was characterized by its nonpolar transmembrane segment and cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motifs, indicating that it may serve as an inhibitory receptor. The use of CHIR amino acid sequences in a search for other PIR relatives led to the recognition of mammalian Fc receptors as distantly related genes. Comparative analyses based on amino acid sequences and three-dimensional protein structures provided molecular evidence for common ancestry of the PIR and Fc receptor gene families.
Resumo:
Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.
Resumo:
A obesidade comum é atualmente um dos problemas de saúde pública mais importante no mundo, frequentemente associada a outros distúrbios tais como hipertensão, diabetes, doenças cardiovasculares e câncer. Apesar da alta prevalência de obesidade em diversas populações, muitos dos estudos relacionados aos seus fatores de risco genéticos foram realizados com indivíduos de ascendência europeia ou asiática, mas foram poucos os realizados com populações de origem africana ou nativas americanas. Nosso trabalho tem por objetivo geral investigar potenciais fatores de risco genéticos associados ao sobrepeso e à obesidade em populações afrodescendentes remanescentes de quilombos do Vale do Ribeira - SP, comunidades rurais semi-isoladas, previamente bem caracterizadas do ponto de vista clínico, genealógico e genético-populacional. Nossa amostra constituiu-se de 759 indivíduos, pertencentes a doze populações de remanescentes de quilombos (Abobral, São Pedro, Galvão, Ivaporunduva, Pedro Cubas, André Lopes, Nhunguara, Sapatu, Pilões, Maria Rosa, Poça e Reginaldo), dos quais foram obtidos amostras de DNA, dados clínicos, informações genealógicas e medidas antropométricas. A investigação dos fatores de risco genéticos associados ao sobrepeso/obesidade foi realizada por duas abordagens: (1) estudo de associação baseado em famílias (N = 584, 59 famílias) e (2) estudo de associação populacional com indivíduos não aparentados (N=305). Foram selecionados para estudo nove polimorfismos em oito genes candidatos: LEP rs2167270, LEPR rs1137101, ADRB2 rs1042713, PPARG rs1801282, PLIN1 rs2289487, RETN rs1862513, INSIG2 rs7566605, FTO rs1121980 e FTO rs1421085. As análises de associação baseadas em família indicaram que, nessas populações, apenas o polimorfismo PLIN1 rs2289487 está associado significativamente com o grupo de risco em relação à razão cintura-quadril (RCQ >=0,85 para mulheres e >=0,90 para homens; P=0,013). Aparentemente não existem trabalhos anteriores que verificaram a associação deste polimorfismo com a obesidade por essa metodologia. As análises do estudo populacional com indivíduos não aparentados mostraram associação significativa entre: (i) o alelo G no polimorfismo LEPR rs1137101 e a variação do índice de massa corporal (IMC; P=0,027); (ii) o alelo G do polimorfismo LEPR rs1137101 e o fenótipo de sobrepeso/obesidade (IMC>=25 Kg/m²; P=0,027); (iii) o alelo G no polimorfismo ADRB2 rs1042713 e o fenótipo de risco (IMC>=25 Kg/m²; P=0,029); (iv) o polimorfismo PLIN1 rs2289487 (genótipo GG) e os menores valores do IMC (P=0,025); (v) o polimorfismo FTO rs1121980 (alelo G) e o fenótipo de risco (IMC>=25 Kg/m²), assim como a variação do IMC (P=0,037 e P=0,022 respectivamente); e (vi) o alelo A no polimorfismo FTO rs1421085 e maiores valores da circunferência da cintura (Cc; P=0,016) e da razão cintura-quadril (RCQ; P=0,030). Tomados em conjunto, nossos resultados sugerem a participação dos genes LEP, LEPR, ADRB2, PLIN1 e FTO no aumento da predisposição ao sobrepeso e à obesidade nas populações remanescentes de quilombos. Por fim, as elevadas estimativas de herdabilidade dos três fenótipos investigados (IMC=33%, Cc=33% e RCQ=70%) reforçam a relevância do papel dos fatores genéticos no acúmulo de gordura corporal. O trabalho apresentado é resultado de uma investigação cuidadosa sobre os componentes genéticos associados à regulação do peso corporal em uma população brasileira afrodescendente (com características históricas, ambientais e genéticas peculiares), corroborando a hipótese de que a obesidade comum nas populações quilombolas do Vale do Ribeira é condicionada por um mecanismo poligênico modulado por fatores ambientais importantes como o sedentarismo e a transição nutricional
Resumo:
Este trabalho apresenta uma observação acurada do universo da cerâmica no povoado de Maragogipinho, Bahia. A pesquisa revela quem são os mestres e mestras do barro, dá a conhecer o seu processo criativo e educativo. Esses homens e mulheres são protagonistas do patrimônio cultural imaterial brasileiro, eles detêm e socializam conhecimentos que perpassam gerações, saberes tecidos em práticas de ensino não sistematizadas e nem legitimadas pelas culturas hegemônicas. A educação artesanal está fundada na ancestralidade, na repetição e na invenção, no constante diálogo entre a tradição e a emergência da modernidade: novas formas de criação e antigos segredos de ofício se misturam, numa tensão permanente entre transformação e conservação. O artesão e a artesã vivem o seu legado cultural e o mantêm vivo, reinventando-o e atualizando-o eternamente. Essa herança conserva a conexão com o passado, mas se reveste de novos símbolos e significados no presente para fortalecer a identidade dos autores e de suas comunidades, e para dar sentido ao futuro.
Resumo:
After the Japanese attack at Pearl Harbor on December 7, 1941, approximately 120,000 people of Japanese ancestry living on the west coast of the United States were forcibly removed from their home communities. These people were designated as "evacuees" by the U.S. Government and were incarcerated within a network of federal government facilities the largest of which were internment centers operated by the War Relocation Authority that held mostly U.S. citizens. The Granada Relocation Center (Amache) was the smallest of these internment centers. The presence of saké at Amache indicates that Japanese Americans continued important practices of daily life despite restrictions under confinement. This thesis investigates the practices of saké production and consumption at Amache and examines the importance of these practices in Japanese American daily life. In order to understand these practices, this research draws on multiple lines of evidence. This includes investigations of an assemblage of the material culture associated with saké, research into the history and methods of production and consumption, collection of oral histories, review of archival data, and the application of practice theory. These data provide insight into practices that are not well understood by researchers of Japanese American internment due to their illicit nature. This research endeavors to characterize how saké was produced and used at Amache and provides a way to understand how cultural practices maintain aspects of everyday life in ways that may have little to do with intentional resistance.