966 resultados para Ammonia Volatilisation
Resumo:
The catalytic dehydrogenation of ethylbenzene in presence of steam is the main commercial route to produce styrene. The industrial catalysts are potassium- and chromia-doped hematite which show low surface areas leading to bad performance and short life. In order to develop catalysts with high areas, the effect of beryllium on the textural properties and on the catalytic performance of this iron oxide was studied. The influence of the amount of the dopant, the starting material and the calcination temperature were also studied. In sample preparations, iron and beryllium salts (nitrate or sulfate) were hydrolyzed with ammonia and then calcinated. The experiments followed a factorial design with two variables in two levels (Fe/Be= 3 and 7; calcination temperature= 500 and 700ºC). Solids without any dopant were also prepared. Samples were characterized by elemental analysis, infrared spectroscopy, surface area and porosity measurements, X-ray diffraction, DSC and TG. The catalysts were tested in a microreactor at 524ºC and 1 atm, by using a mole ratio of steam/ ethylbenzene=10. The selectivity was measured by monitoring styrene, benzene and toluene formation. It was found that the effect of beryllium on the characteristics of hematite and on its catalytic performance depends on the starting material and on the amount of dopant. Surface areas increased due to the dopant as well as the nature of the precursor; samples produced by beryllium sulfate showed higher areas. Beryllium-doped solids showed a higher catalytic activity when compared to pure hematite, but no significant influence of the anion of starting material was noted. It can be concluded that beryllium acts as both textural and structural promoter. Samples with Fe/Be= 3, heated at 500ºC, lead to the highest conversion and were the most selective. However, catalysts prepared from beryllium sulfate are the most promising to ethylbenzene dehydrogenation due to their high surface area which could lead to a longer life.
Resumo:
Työn tarkoituksena oli laatia suunnitelma ilmaan johdettavien epäpuhtauksien päästökartoitukselle Porvoon öljynjalostamolla. Raskasmetallien, metaanin, fluorivetyhapon, rikkivedyn ja ammoniakin merkittävät päästöpaikat ja -tarkkailumenetelmät kartoitettaisiin tulevaa päästöraportointia varten. Tarkkailun alaisten komponenttien muodostuminen, kulkeutuminen ja merkittävät päästöpaikat Porvoon jalostamolla selvitettiin kirjallisuuslähteiden, jalostamon toimintajärjestelmän ohjeiden sekä työntekijöiden haastattelujen perusteella. Merkittäviä häiriöpäästötilanteita kartoitettiin ja arvioitiin jalostamon poikkeamatilastojen ja haastattelujen avulla. Normaalitoiminnan aikana tarkkailun alaisista epäpuhtauksista vapautuu ilmaan merkittäviä määriä ainoastaan metaania ja raskasmetalleja. Metaania vapautuu ilmaan polttoprosesseissa sekä hajapäästönä. Raskasmetallipäästöjä syntyy pohjaöljyn poltossa energialaitoksella sekä leijukatalyyttisessä krakkauksessa. Rikkilaitosten häiriötilanteista aiheutuu rikkivety- ja ammoniakkipäästöjä pääasiassa soihtujärjestelmän kautta. Alkylointiyksikön vuodoissa voi vapautua fluorivetyhappoa ilmaan. Päästömääriä arvioidaan pääosin laskennallisesti. Päästökartoitussuunnitelma on kokonaisuudessaan tämän työn liitteenä. Näyttäisi siltä, että TRS-yhdisteiden, ammoniakin ja fluorivetyhapon ilmapäästöt eivät ole merkittäviä Porvoon öljynjalostamolla. Uuden pohjaöljy-yksikön käyttöönotto on vähentänyt myös raskasmetallipäästöjä energialaitoksella. Metaanipäästö vaikuttaa kartoitukseen sisällytettävistä epäpuhtauksista merkityksellisimmältä Porvoon öljynjalostamolla.
Resumo:
A simple spectrophotometric method is proposed for the determination of cefaclor. The method involves alkaline hydrolysis of the drug in ammonia buffer solution at pH 10 to yield diketopiperazine-2,5-dione derivative and subsequent measurement at 340 nm. Beer's law is obeyed in the concentration range 1.8 - 55 mg/mL. The proposed method was successfully applied to the determination of cefaclor in pharmaceutical formulations.
Resumo:
Nanoparticles of yttrium iron garnet (YIG) were obtained by coprecipitation. The particles were prepared by hydrolysis in acid medium with addition of ammonia or urea, for homogeneous nucleation, at 90ºC. Different compositions and spherical morphologies were achieved by changing reactants concentrations and precipitation agent. X-ray diffractometry, transmission electron microscopy, differential thermal analysis and electrophoretic mobility were carried out on these particles to investigate the obtained phase, phase transition temperature, morphology, particle size and zeta potential, respectively.
Resumo:
The extravasation of leukocytes from the blood stream into the tissues is a prerequisite for adequate immune surveillance and immune reaction. The leukocyte movement from the bloodstream into the tissues is mediated by molecular bonds. The bonds are formed between adhesion molecules on endothelial cells and their counterparts expressed on leukocytes. Vascular adhesion protein-1 (VAP-1) is an endothelial adhesion molecule mediating leukocyte interactions with endothelium. It is also an enzyme having semicarbazide sensitive amine oxidase (SSAO) activity. The SSAOactivity catalyses deamination of primary amines into corresponding aldehyde and during the enzymatic reaction hydrogen peroxide and ammonia are produced. The aim of this study was to investigate the relationship between the adhesive and enzymatic activities of VAP-1. The role of VAP-1 in leukocyte traffic was studied in vivo under normal and pathological conditions in VAP-1 deficient mice. The results from in vitro flow-based assays indicated that VAP-1 uses both SSAOactivity and its adhesive epitope to bind leukocytes, and both are perquisites for VAP-1 mediated adhesion. Furthermore, in vivo results demonstrated that leukocyte trafficking was impaired in vivo by deleting VAP-1 or inhibiting SSAO-activity. There was impairment in lymphocyte recirculation as well as leukocyte accumulation into the inflamed area. Moreover, the VAP-1 deficient mice did not show generalized defects in antimicrobial responses, whereas significant reduction in tumor progression and neovascularization was observed. These results indicate that VAP-1 could be used as a target in anti-adhesive therapies either by blocking its adhesive epitope with antibodies or by inhibiting its SSAO-activity using inhibitors. Moreover, targeting of VAP-1 may provide a new way of inhibiting neovascularization in tumors.
Influência da calcinação sobre a remoção de ferro da caulinita e ilita e seus efeitos sobre a acidez
Resumo:
Samples of natural clay composed by kaolinite, illite, goethite and quartz, were calcinated and submitted to lixiviation with citrate and chloridric acid in order to remove iron. Investigation due to extraction consequences was carried cut by analyzing its acid properties using ammonia gas as probe in infrared spectrophotometry analysis. The sample that were treated with citrate followed by acid lixiviation yield materials twice more acid than samples treated with acid only.
Resumo:
Työssä tutkittiin sinkin uutossa käytettävän di(2-etyyliheksyyli)fosforihappo (D2EHPA) -uuttoreagenssin faasikäyttäytymistä ja miten laimentimen koostumus, lämpötila ja orgaanisen faasin sinkkipitoisuus vaikuttavat faasitasapainoon. Laimentimen vaikutuksen havaittiin olevan pientä, kun taas lämpötilan nostaminen yli huoneenlämpötilan leventää faasidiagrammin yksifaasialuetta. Pienet orgaanisen faasin sinkkipitoisuudet eivät juuri vaikuta faasitasapainoon. Sinkin ja D2EHPA:n moolisuhteen ollessa välillä 0,1–0,2 kompleksin rakenne ilmeisesti muuttuu. Sinkkipitoisuuden kasvaessa yksifaasialue muodostuu pienemmillä ammoniakkimäärillä. Suurilla orgaanisen faasin sinkkipitoisuuksilla ja ammoniakkimäärillä muodostuu orgaanisen faasin ja vesifaasin välille kolmas nestefaasi. D2EHPA:n (40 p %) vesipitoisuuden ja viskositeetin pH riippuvuutta tutkittiin, kun laimentimena oli alifaattinen hiilivetyliuotin. Nostettaessa pH yli 3,5:n uuttoreagenssi alkoi muodostaa käänteismisellejä, jolloin orgaanisen faasin vesipitoisuus ja viskositeetti kasvoivat eksponentiaalisesti. Sinkin mukana uuttautuu epäpuhtauksia kuten Al3+, Co2+, Cu2+, Na+, Ni2+, Cl- ja F-. Takaisinuuton kautta epäpuhtaudet joutuvat talteenottoelektrolyysiin, jossa ne voivat vaikuttaa tuotteen laatuun ja laskea virtahyötysuhdetta. Tarkoituksena oli tutkia väheneekö epäpuhtauksien myötäuuttautuminen jollakin tietyllä sinkin latausasteella. Fluoridin ja kuparin uuttautumisen havaittiin vähenevän vasta, kun sinkin pitoisuus orgaanisessa faasissa oli yli 20 g/L lämpötilasta riippumatta. Fluoridi uuttautuu mahdollisesti alumiinikompleksina ja/tai fluorihappona. Koboltin ja nikkelin myötäuuttautumisen havaittiin vähenevän, kun sinkin latausaste oli yli 10 g/L. Natrium ja kloridi eivät myötäuuttautuneet.
Resumo:
A system for disposal and recovery of the main effluents and chemical waist from isotope separation plants and enriched compounds-15N and 34S production has been carried out at the Stable Isotope Laboratory (LIE) of the CENA/USP. Around four hundred thousand liters of effluents has been recovered yearly. Among the recovered chemical wastes, the more relevant are: ammonia; brome; ammonium and sodium sulfate; sodium hydroxide; sulfur dioxide; and hydrochloric acid. Chemical wastes containg recoverable heavy metals (Ag, Cr and Cu) and solvents (methanol, ethanol and acetone) are processed and recovered. Gaseous emissions, mainly H2S are used for recovery of heavy metals solutions. The minimization of the residues waters, as well the reduction of electric energy consume was established using a water deionization system. A cost/effect balance of the process is reported.
Resumo:
Ammonia is the most common alkaline gas of the atmosphere, being important in the neutralization of various processes that occur in the atmosphere. Its main sources of emission are the decomposition of organic matter and dejections of animals. Ammonia is used by man in diverse activities of production, therefore it is a gas that can contaminate work environments. Measurements of ammonia concentration in some parts of the world have shown great spatial and weather variation. This large variability makes it difficult to estimate the input of reduced nitrogen to different ecosystems from measurements.
Resumo:
We investigated the effect of benthic substratum type (sand and rocks) and nutrient supply (N and P) on biofilm structure and heterotrophic metabolism in a field experiment in a forested Mediterranean stream (Fuirosos). Rock and sand colonization and biofilm formation was intensively studied for 44 d at two stream reaches: control and experimental (continuous addition of phosphate, ammonia, and nitrate). Structural (C, N, and polysaccharide content and bacterial and chlorophyll density) and metabolic biofilm parameters (b-glucosidase, peptidase, and phosphatase enzyme activities) were analyzed throughout the colonization process. The epilithic biofilm (grown on rocks) had a higher peptidase activity at the impacted reach, together with a higher algal and bacterial biomass. The positive relationship between the peptidase activity per cell and the N content of the epilithic biofilm suggested that heterotrophic utilization of proteinaceous compounds from within the biofilm was occurring. In contrast, nutrient addition caused the epipsammic biofilm (grown on sand) to exhibit lower b-glucosidase and phosphatase activities, without a significant increase in bacterial and algal biomass. The differential response to nutrient addition was related to different structural characteristics within each biofilm. The epipsammic biofilm had a constant and high C:N ratio (22.7) throughout the colonization. The epilithic biofilm had a higher C:N ratio at the beginning of the colonization (43.2) and evolved toward a more complex structure (high polysaccharide content and low C:N ratio) during later stages. The epipsammic biofilm was a site for the accumulation and degradation of organic matter: polysaccharides and organic phosphorus compounds had higher degradation activities
Resumo:
Several extraction procedures are described for the determination of exchangeable and fixed ammonium, nitrate + nitrite, total exchangeable nitrogen and total nitrogen in certified reference soils and petroleum reservoir rock samples by steam distillation and indophenol method. After improvement of the original distillation system, an increase in worker safety, a reduction in time consumption, a decrease of 73% in blank value and an analysis without ammonia loss, which could possibly occur, were achieved. The precision (RSD < 8%, n = 3) and the detection limit (9 mg kg-1 NH4+-N) are better than those of published procedures.
Resumo:
In the begining of April 2004, concentrations of NHx (NH3 + NH4+) were measured in surface waters of the Guanabara Bay. Concentrations varied from 2 to 143 mmol L-1. Ammonia exchange at the air-sea interface was quantified using a numerical model. No measurement of NH3 concentration in air (c air) was performed. Thus, calculations of NH3 flux were based on the assumptions of c air = 1 and 5 µg m-3. Fluxes were predominantly from the water to the atmosphere and varied from -20 to almost 3500 µg N m-2 h-1.
Resumo:
The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.
Resumo:
This article describes the preparation and characterization of the cellulose/ hydrated zirconium oxide composites prepared by conventional precipitation (PC) and homogeneous solution precipitation (PSH) methods. The composite obtained by the PC method was prepared by using an ammonia solution as the precipitating agent, while the composite obtained by the PSH method was prepared by using urea as the precipitating agent. The adsorption of dichromate ions on the composites was studied using factorial design 2³. The variables were: initial concentration, agitation time and mass of the composite. The data obtained agree better for the composite obtained by the PC method.
Resumo:
In this paper a water quality index is developed to subsidize management actions in the Atibaia River for upon protection of aquatic organisms. This index is composed of two measurable environmental parameters normaly, ammonia and dissolved oxygen, the latter representing the contribution of organic matter. Concentrations of these two variables were normalized on a scale from 0 to 100 and translated into statements of quality (excellent, good, regular, bad and very bad). The index was applied to three monitoring points in the Atibaia River and compared to other indices used by the State of São Paulo Environmental Agency (CETESB). The results showed that the degradation in this watershed follows the urban population density. The developed index is more restricted than the other ones routinely used to infer water quality.