937 resultados para Amino acid, hydrolysable as carbon flux
Resumo:
Arabidopsis amino acid transporters (AAPs) show individual temporal and spatial expression patterns. A new amino acid transporter, AAP8 was isolated by reverse transcription-PCR. Growth and transport assays in comparison to AAP1-5 characterize AAP8 and AAP6 as high affinity amino acid transport systems from Arabidopsis. Histochemical promoter-beta-glucuronidase (GUS) studies identified AAP6 expression in xylem parenchyma, cells requiring high affinity transport due to the low amino acid concentration in xylem sap. AAP6 may thus function in uptake of amino acids from xylem. Histochemical analysis of AAP8 revealed stage-dependent expression in siliques and developing seeds. Thus AAP8 is probably responsible for import of organic nitrogen into developing seeds. The only missing transporter of the family AAP7 was nonfunctional in yeast with respect to amino acid transport, and expression was not detectable. Therefore, AAP6 and -8 are the only members of the family able to transport aspartate with physiologically relevant affinity. AAP1, -6 and -8 are the closest AAP paralogs. Although AAP1 and AAP8 originate from a duplicated region on chromosome I, biochemical properties and expression pattern diverged. Overlapping substrate specificities paired with individual properties and expression patterns point to specific functions of each of the AAP genes in nitrogen distribution rather than to mere redundancy.
Resumo:
When comparing the transporters of three completely sequenced eukaryotic genomes - Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens - transporter types can be distinguished according to phylogeny, substrate spectrum, transport mechanism and cell specificity. The known amino acid transporters belong to five different superfamilies. Two preferentially Na+-coupled transporter superfamilies are not represented in them yeast and Arabidopsis genomes, whereas the other three groups, which often function as H+-coupled systems, have members in all investigated genomes. Additional superfamilies exist for organellar transport, including mitochondrial and plastidic carriers. When used in combination with phylogenetic analyses, functional comparison might aid our prediction of physiological functions for related but uncharacterized open reading frames.
Resumo:
Autophagy in the protozoan parasite, Trypanosoma brucei, may be involved in differentiation between different life cycle forms and during growth in culture. We have generated multiple parasite cell lines stably expressing green fluorescent protein- or hemagglutinin-tagged forms of the autophagy marker proteins, TbAtg8.1 and TbAtg8.2, in T. brucei procyclic forms to establish a trypanosome system for quick and reliable determination of autophagy under different culture conditions using flow cytometry. We found that starvation-induced autophagy in T. brucei can be inhibited by addition of a single amino acid, histidine, to the incubation buffer. In addition, we show that autophagy is induced when parasites enter stationary growth phase in culture and that their capacity to undergo starvation-induced autophagy decreases with increasing cell density.
Resumo:
Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.
Resumo:
The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.
Resumo:
The metabolic instability and high kidney retention of minigastrin (MG) analogues hamper their suitability for use in peptide-receptor radionuclide therapy of CCK2/gastrin receptor-expressing tumors. High kidney retention has been related to N-terminal glutamic acids and can be substantially reduced by coinjection of polyglutamic acids or gelofusine. The aim of the present study was to investigate the influence of the stereochemistry of the N-terminal amino acid spacer on the enzymatic stability and pharmacokinetics of (111)In-DOTA-(d-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-D) and (111)In-DOTA-(l-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-L). Using circular dichroism measurements, we demonstrate the important role of secondary structure on the pharmacokinetics of the two MG analogues. The higher in vitro serum stability together with the improved tumor-to-kidney ratio of the (d-Glu)6 congener indicates that this MG analogue might be a good candidate for further clinical study.
Resumo:
Essential amino acids cannot be synthesized by humans and animals. They often are limiting in plant-derived foods and determine the nutritional value of a given diet [1]. Seeds and fruits often represent the harvestable portion of plants. In order to improve the amino acid composition of these tissues, it is indispensable to understand how these substrates are transported within the plant. Amino acids result from nitrogen assimilation, which often occurs in leaves, the source tissue. They are transported via the vasculature, the xylem, and the phloem into the seeds, the so-called sink tissue, where they are stored or consumed. In seeds, several tissues are symplasmically isolated [2, 3], i.e., not connected by plasmodesmata, channels in the cell walls that enable a cytoplasmic continuum in plants [4]. Consequently, amino acids must be exported from cells into the apoplast and re-imported many times to support seed development. Several amino acid importers are known, but exporters remained elusive [5, 6]. Here, we characterize four members of the plant-specific UmamiT transporter family from Arabidopsis, related to the amino acid facilitator SIAR1 and the vacuolar auxin transporter WAT1 [7, 8]. We show that the proteins transport amino acids along their (electro)chemical potential across the plasma membrane. In seeds, they are found in tissues from which amino acids are exported. Loss-of-function mutants accumulate high levels of free amino acids in fruits and produce smaller seeds. Our results strongly suggest a crucial role for the UmamiTs in amino acid export and possibly a means to improve yield quality.
Resumo:
Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^
Resumo:
A high-resolution sea surface temperature and paleoproductivity reconstruction on a sedimentary record collected at 36°S off central-south Chile (GeoB 7165-1, 36°33'S, 73°40'W, 797 m water depth, core length 750 cm) indicates that paleoceanographic conditions changed abruptly between 18 and 17 ka. Comparative analysis of several cores along the Chilean continental margin (30°-41°S) suggests that the onset and the pattern of deglacial warming was not uniform off central-south Chile due to the progressive southward migration of the Southern Westerlies and local variations in upwelling. Marine productivity augmented rather abruptly at 13-14 ka, well after the oceanographic changes.We suggest that the late deglacial increase in paleoproductivity off central-south Chile reflects the onset of an active upwelling system bringing nutrient-rich, oxygen-poor Equatorial SubsurfaceWater to the euphotic zone, and a relatively higher nutrient load of the Antarctic Circumpolar Current. During the Last Glacial Maximum, when the Southern Westerlies were located further north, productivity off central-south Chile, in contrast to off northern Chile, was reduced due to direct onshore-blowing winds that prevented coastal upwelling and export production.