747 resultados para Alden, Priscilla Mullins.
Resumo:
Occurrence of deep-sea dolomites has been reported from numerous settings (for discussion see Lumsden, 1988). Different authors agree that dolomite formation in the pelagic realm is a relatively early diagenetic process (e.g., Jorgensen, 1983; Shimmield and Price, 1984; Kablanow et al., 1984; Kulm et al., 1984). Baker and Burns (1985) suggest that most of the pelagic dolomites formed within a few tens of meters below the seafloor within the zone of microbial sulfate reduction. According to Fuechtbauer and Richter (1988), dolomite can form in the deep-sea at a minimum temperature of 10°C. Other deep-sea dolomites are products of fluids derived from underlying evaporites or submarine weathering of basalts (Garrison, 1981). In some cases (Mullins et al., 1985; Dix and Mullins, 1988; Mullins et al., 1988), the existence of dolomite is linked to disconformities and its formation may have resulted from circulation of seawater through the sediment during prolonged exposure (Dix and Mullins, 1988, p. 287). At Site 768 (Fig. 1), lithified carbonate layers, some containing variable amounts of dolomite, occur below 201 mbsf (Miocene). These beds alternate with unconsolidated or semi-lithified marl layers interbedded in clays and siliciclastic turbidites. The irregular depth distribution of the limestone beds and the variation in preservation and recrystallization of the calcareous microfaunas suggest that lithification of carbonates at Site 768 not only reflects burial diagenesis as described by Garrison (1981) and others, but in part may be a selective, early diagenetic process. The different types and distribution of the dolomite additionally seem to support this assumption. The purpose of this report is to document the occurrence and textural nature of the dolomite at Site 768. Methods used were analyses of stained thin sections (Alizarin S and Ferrocyanide) and studies with the scanning electron microscope. No geochemical analyses (e.g., stable isotopes) were carried out; they will be the subject of further investigations.
Resumo:
Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.