966 resultados para Adult bone marrow stem cells
Resumo:
BACKGROUND: Allogeneic bone marrow donors can be incompatible at different levels. Even HLA-identical pairs will be still incompatible for numerous minor histocompatibility antigens (mHag). Nevertheless, some incompatibilities are found to be associated with an increased risk of graft-versus-host disease (GVHD), which could be related to the way the immune system recognizes these antigens. METHODS: We determined the specificity of cytotoxic T-cell clones isolated during acute GVHD or during bone marrow graft rejection in patients (n=14) transplanted with marrow from donors who were histoincompatible for different minor and/or major histocompatibility antigens. RESULTS: We found a clear hierarchy among the different types of histoincompatibilities. In three combinations mismatched for a class I allele, all 27 clones isolated during GVHD were specific for the incompatible HLA molecule. In the 11 class I-identical combinations, 14 different mHags were recognized. The mHag HA-1, known to have a significant impact on the development of GVHD, was recognized in the two HA-1-incompatible combinations. In one of these combinations, which was sex mismatched, all 56 clones analyzed were directed against HA-1, demonstrating the dominance of this mHag. In the four HA-1-compatible, sex-mismatched combinations, the anti-H-Y response was directed against one immunodominant epitope rather than against multiple Y-chromosome-encoded epitopes. All male specific cytotoxic T lymphocytes (n=15) recognized the same high-performance liquid chromatography-purified peptide fraction presented by T2 cells. Moreover, all cytotoxic T lymphocytes tested (n=6) were specific for the SMCY-derived peptide FIDSYICQV, originally described as being the H-Y epitope recognized in the context of HLA-A*0201. CONCLUSIONS: Some histocompatibility antigens are recognized in an immunodominant fashion and will therefore be recognized in the majority of mismatched combinations. Only for such antigens, correlations between mismatches and the occurrence of GVHD or graft rejections will be found.
Resumo:
Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.
Resumo:
Cancer stem cells that display tumor-initiating properties have recently been identified in several distinct types of malignancies, holding promise for more effective therapeutic strategies. However, evidence of such cells in sarcomas, which include some of the most aggressive and therapy-resistant tumors, has not been shown to date. Here, we identify and characterize cancer stem cells in Ewing's sarcoma family tumors (ESFT), a highly aggressive pediatric malignancy believed to be of mesenchymal stem cell (MSC) origin. Using magnetic bead cell separation of primary ESFT, we have isolated a subpopulation of CD133+ tumor cells that display the capacity to initiate and sustain tumor growth through serial transplantation in nonobese diabetic/severe combined immunodeficiency mice, re-establishing at each in vivo passage the parental tumor phenotype and hierarchical cell organization. Consistent with the plasticity of MSCs, in vitro differentiation assays showed that the CD133+ cell population retained the ability to differentiate along adipogenic, osteogenic, and chondrogenic lineages. Quantitative real-time PCR analysis of genes implicated in stem cell maintenance revealed that CD133+ ESFT cells express significantly higher levels of OCT4 and NANOG than their CD133- counterparts. Taken together, our observations provide the first identification of ESFT cancer stem cells and demonstration of their MSC properties, a critical step towards a better biological understanding and rational therapeutic targeting of these tumors.
Resumo:
The integrity of the cornea, the most anterior part of the eye, is indispensable for vision. Forty-five million individuals worldwide are bilaterally blind and another 135 million have severely impaired vision in both eyes because of loss of corneal transparency; treatments range from local medications to corneal transplants, and more recently to stem cell therapy. The corneal epithelium is a squamous epithelium that is constantly renewing, with a vertical turnover of 7 to 14 days in many mammals. Identification of slow cycling cells (label-retaining cells) in the limbus of the mouse has led to the notion that the limbus is the niche for the stem cells responsible for the long-term renewal of the cornea; hence, the corneal epithelium is supposedly renewed by cells generated at and migrating from the limbus, in marked opposition to other squamous epithelia in which each resident stem cell has in charge a limited area of epithelium. Here we show that the corneal epithelium of the mouse can be serially transplanted, is self-maintained and contains oligopotent stem cells with the capacity to generate goblet cells if provided with a conjunctival environment. Furthermore, the entire ocular surface of the pig, including the cornea, contains oligopotent stem cells (holoclones) with the capacity to generate individual colonies of corneal and conjunctival cells. Therefore, the limbus is not the only niche for corneal stem cells and corneal renewal is not different from other squamous epithelia. We propose a model that unifies our observations with the literature and explains why the limbal region is enriched in stem cells.
Resumo:
Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.
Resumo:
Hematopoietic stem cells (HSCs), with their dual ability for self-renewal and multilineage differentiation, constitute an essential component of hematopoietic transplantations. Human fetal liver (FL) represents a promising alternative HSC source, and we previously reported simple culture conditions allowing long-term expansion of FL hematopoietic progenitors. In the present study, we used the nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse xenotransplantation assay to confirm that human FL is rich in NOD/SCID-repopulating cells (SRCs) and to show that these culture conditions repeatedly maintained short- and long-term SRCs from various FL samples for at least 28 days. Quantitative limited dilution analysis in NOD/SCID mice demonstrated for the first time that a 10- to over a 100-fold net expansion of FL SRCs could be achieved after 28 days of culture. The efficiency of this culture system may lead to an increase in the use of FL as a source of HSCs for transplantation in adult patients, as previously demonstrated with umbilical cord blood under different culture conditions.
Resumo:
PURPOSE: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using (18)F-labeled fluorodeoxyglucose positron emission tomography [(18)F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). METHODS AND MATERIALS: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [(18)F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BMTOT). Active bone marrow (BMACT) was contoured based on SUV greater than the mean SUV of BMTOT. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V10, V20, V30, and V40, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. RESULTS: Mean relative pre-post-therapy SUV reductions in BMTOT and BMACT were 27% and 38%, respectively. BMACT volume was significantly reduced after treatment (from 651.5 to 231.6 cm(3), respectively; P<.0001). BMACT V30 was significantly correlated with a reduction in BMACT SUV (R(2), 0.14; P<.001). The reduction in BMACT SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R(2), 0.27; P=.04) and at last follow-up (R(2), 0.25; P=.04). Different dosimetric parameters of BMTOT and BMACT correlated with long-term hematological outcome. CONCLUSIONS: The volumes of BMTOT and BMACT that are exposed to even relatively low doses of radiation are associated with a decrease in WBC counts following CRT. The loss in proliferative BM SUV uptake translates into low WBC nadirs after treatment. These results suggest the potential of intensity modulated radiation therapy to spare BMTOT to reduce long-term hematological toxicity.
Resumo:
Many cell types are currently being studied as potential sources of cardiomyocytes for cell transplantation therapy to repair and regenerate damaged myocardium. The question remains as to which progenitor cell represents the best candidate. Bone marrow-derived cells and endothelial progenitor cells have been tested in clinical studies. These cells are safe, but their cardiogenic potential is controversial. The functional benefits observed are probably due to enhanced angiogenesis, reduced ventricular remodeling, or to cytokine-mediated effects that promote the survival of endogenous cells. Human embryonic stem cells represent an unlimited source of cardiomyocytes due to their great differentiation potential, but each step of differentiation must be tightly controlled due to the high risk of teratoma formation. These cells, however, confront ethical barriers and there is a risk of graft rejection. These last two problems can be avoided by using induced pluripotent stem cells (iPS), which can be autologously derived, but the high risk of teratoma formation remains. Cardiac progenitor cells have the advantage of being cardiac committed, but important questions remain unanswered, such as what is the best marker to identify and isolate these cells? To date the different markers used to identify adult cardiac progenitor cells also recognize progenitor cells that are outside the heart. Thus, it cannot be determined whether the cardiac progenitor cells identified in the adult heart represent resident cells present since fetal life or extracardiac cells that colonized the heart after cardiac injury. Developmental studies have identified markers of multipotent progenitors, but it is unknown whether these markers are specific for adult progenitors when expressed in the adult myocardium. Cardiac regeneration is dependent on the stability of the cells transplanted into the host myocardium and on the electromechanical coupling with the endogenous cells. Finally, the promotion of endogenous regenerative processes by mobilizing endogenous progenitors represents a complementary approach to cell transplantation therapy.
Resumo:
Background In recent years, planaria have emerged as an important model system for research into stem cells and regeneration. Attention is focused on their unique stem cells, the neoblasts, which can differentiate into any cell type present in the adult organism. Sequencing of the Schmidtea mediterranea genome and some expressed sequence tag projects have generated extensive data on the genetic profile of these cells. However, little information is available on their protein dynamics. Results We developed a proteomic strategy to identify neoblast-specific proteins. Here we describe the method and discuss the results in comparison to the genomic high-throughput analyses carried out in planaria and to proteomic studies using other stem cell systems. We also show functional data for some of the candidate genes selected in our proteomic approach. Conclusions We have developed an accurate and reliable mass-spectra-based proteomics approach to complement previous genomic studies and to further achieve a more accurate understanding and description of the molecular and cellular processes related to the neoblasts.
Resumo:
Neural tissue has historically been regarded as having poor regenerative capacity but recent advances in the growing fields of tissue engineering and regenerative medicine have opened new hopes for the treatment of nerve injuries and neurodegenerative disorders. Adipose tissue has been shown to contain a large quantity of adult stem cells (ASC). These cells can be easily harvested with low associated morbidity and because of their potential to differentiate into multiple cell types, their use has been suggested for a wide variety of therapeutic applications. In this review we examine the evidence indicating that ASC can stimulate nerve regeneration by both undergoing neural differentiation and through the release of a range of growth factors. We also discuss some of the issues that need to be addressed before ASC can be developed as an effective cellular therapy for the treatment of neural tissue disorders.
Resumo:
Interest groups advocate centre-specific outcome data as a useful tool for patients in choosing a hospital for their treatment and for decision-making by politicians and the insurance industry. Haematopoietic stem cell transplantation (HSCT) requires significant infrastructure and represents a cost-intensive procedure. It therefore qualifies as a prime target for such a policy. We made use of the comprehensive database of the Swiss Blood Stem Cells Transplant Group (SBST) to evaluate potential use of mortality rates. Nine institutions reported a total of 4717 HSCT - 1427 allogeneic (30.3%), 3290 autologous (69.7%) - in 3808 patients between the years 1997 and 2008. Data were analysed for survival- and transplantation-related mortality (TRM) at day 100 and at 5 years. The data showed marked and significant differences between centres in unadjusted analyses. These differences were absent or marginal when the results were adjusted for disease, year of transplant and the EBMT risk score (a score incorporating patient age, disease stage, time interval between diagnosis and transplantation, and, for allogeneic transplants, donor type and donor-recipient gender combination) in a multivariable analysis. These data indicate comparable quality among centres in Switzerland. They show that comparison of crude centre-specific outcome data without adjustment for the patient mix may be misleading. Mandatory data collection and systematic review of all cases within a comprehensive quality management system might, in contrast, serve as a model to ascertain the quality of other cost-intensive therapies in Switzerland.
Resumo:
The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague-Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.
Resumo:
To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and flow cytometry. Granulocytes and naive T cells showed a parallel biphasic decline in telomere length with age that most likely reflected accumulated cell divisions in the common precursors of both cell types: hematopoietic stem cells. Telomere loss was very rapid in the first year, and continued for more than eight decades at a 30-fold lower rate. Memory T cells also showed an initial rapid decline in telomere length with age. However, in contrast to naive T cells, this decline continued for several years, and in older individuals lymphocytes typically had shorter telomeres than did granulocytes. Our findings point to a dramatic decline in stem cell turnover in early childhood and support the notion that cell divisions in hematopoietic stem cells and T cells result in loss of telomeric DNA.
Resumo:
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.
Resumo:
BACKGROUND: High-dose therapy with autologous stem cell support after standard dose induction is a promising approach for therapy of primary central nervous system lymphoma (PCNSL). High-dose methotrexate (HD-MTX) is a standard drug for induction of PCNSL; however, data about the capacity of HD-MTX plus granulocyte-colony-stimulating factor (G-CSF) to mobilize hemopoietic progenitors are lacking. STUDY DESIGN AND METHODS: This investigation describes the data from stem cell mobilization and apheresis procedures after one or two cycles of HD-MTX for induction of PCNSL within the East German Study Group for Haematology and Oncology 053 trial. Eligible patients proceeded to high-dose busulfan/thiotepa after induction therapy and mobilization. RESULTS: Data were available from nine patients with a median age of 58 years. The maximal CD34+ cell count per microL of blood after the first course of HD-MTX was 13.89 (median). Determination was repeated in six patients after the second course with a significantly higher median CD34+ cell count of 33.69 per microL. Five patients required two apheresis procedures and in four patients a single procedure was sufficient. The total yield of CD34+ cells per kg of body weight harvested by one or two leukapheresis procedures was 6.60 x 10(6) (median; range, 2.68 x 10(6)-15.80 x 10(6)). The yield of CD34+ cells exceeded the commonly accepted lower threshold of 3 x 10(6) cells per kg of body weight in eight of nine cases. Even in the ninth, hemopoietic recovery after stem cell reinfusion was rapid and safe. CONCLUSION: HD-MTX plus G-CSF is a powerful combination for stem cell mobilization in patients with PCNSL and permits safe conduction of time-condensed and dose-intense protocols with high-dose therapy followed by stem cell reinfusion after HD-MTX induction.