489 resultados para Acoplamento bilinear


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminum Alloys are widely used as structural materials in the aerospace industry due to low weight, high mechanical strength and enduring corrosion resistance. Their resistance to corrosion is attributed to the rapidly formed stable oxide film (Al2O3) which spontaneously forms itself on the surface of the material. However, in the presence of aggressive ions, such as halide, Aluminum Alloys are subject to a localized process of corrosion. The electrochemical behavior of 7081-T73511 and 7050-T7451 Aluminum Alloys employed in the aerospace industry was investigated using a 0.6 M NaCl solution under the conditions of a controlled mass transport employing a rotating disk electrode. The theoretical limiting current density was determined by the Kouteki-Levich equation. The results confirmed that the inter-metallic Al7Cu2Fe acts as preferential cathode generating the galvanic coupling and the dissolution of the Aluminummatrix around it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents one proposal of the energy management's model system using photovoltaic panels. The module proposed seeks to monitor photovoltaic panels, which have intermittency in power generation caused by environmental or load conditions, in order to control the coupling between the panel and the load - through the charge controller, of aiming that the panel's operation will be always on the maximum power transfer point as possible. For this, it used the maximum power point tracking technique - MPPT, implemented in LabVIEW software, also utilizing the data acquisition card NI myDAQ. In addition, it was implemented the controller access remote module, from the sharing of network data, so the panels performance can be through a tablet, monitored and controlled with no need for direct contact with the Supervisory server

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents one proposal of the energy management's model system using photovoltaic panels. The module proposed seeks to monitor photovoltaic panels, which have intermittency in power generation caused by environmental or load conditions, in order to control the coupling between the panel and the load - through the charge controller, of aiming that the panel's operation will be always on the maximum power transfer point as possible. For this, it used the maximum power point tracking technique - MPPT, implemented in LabVIEW software, also utilizing the data acquisition card NI myDAQ. In addition, it was implemented the controller access remote module, from the sharing of network data, so the panels performance can be through a tablet, monitored and controlled with no need for direct contact with the Supervisory server

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feedback stabilization of an ensemble of non interacting half spins described by the Bloch equations is considered. This system may be seen as an interesting example for infinite dimensional systems with continuous spectra. We propose an explicit feedback law that stabilizes asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of the convergence is done locally around the equilibrium in the H-1 topology. This local convergence is shown to be a weak asymptotic convergence for the H-1 topology and thus a strong convergence for the C topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the equilibrium. (C) 2011 Elsevier Ltd. All rights reserved.