739 resultados para Acetyl cholinesterase
Resumo:
This research presents a comparative study of enzymatic activity of the hypopharyngeal gland extracts from workers of Apis mellifera in three physiologic stages: newly emerged, nurse and forager workers, with the objective of contributing to the comprehension of the gland function. In order to determinate the enzymes present in the extracts, the Api Zym kit (Bio Merieux) was used to test the activity of 19 different enzymes. The enzymes found in larger amounts only in the hypopharyngeal glands from certain individuals were the following: in newly emerged workers, the N-acetyl-double down arrow-glucosaminidase that may be digesting the chitin of some food ingested by the bee; in forager workers, the acid phosphatase that is likely acting in authophagic processes, the a-glucosidase, in the processing of nectar into honey, and the double down arrow-glucosidases, in the pollen digestion.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. They produce common intracellular products including proteins, amino acids, polyols, carotenoids, polysaccharides and vitamins. The secondary metabolites found in lichens are phenolics which accumulate either on the cortex or on the cell walls of medullary hyphae and they are mainly acetyl-polimalonyl pathway derivatives. Polysaccharides, proteins and secondary metabolites produced by lichens have attracted the attention of investigators due their biological activities. This revision coments about the biosynthetic origin and structures of the principal classes of compounds produced by these organisms.
Resumo:
O organofosforado diclorvós impregnado em coleiras plásticas é um recurso utilizado em medicina veterinária que visa ao controle de ectoparasitas de cães e gatos. O objetivo deste trabalho foi avaliar os efeitos do uso de coleiras plásticas impregnadas com diclorvós (8,37%) em ratas Wistar durante o período de gestação e lactação, como possível fonte de alterações comportamentais e da atividade colinesterásica cerebral dos filhotes. Na desmama, não houve diferença na atividade colinesterásica cerebral entre as mães tratadas com diclorvós e o grupo controle, bem como entre os respectivos filhotes. O tratamento com diclorvós também não influenciou no comportamento geral dos animais, avaliado no campo aberto, nem no nível de ansiedade testado no labirinto em cruz elevado, ambos aos 35 dias pós-natal.
Resumo:
Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.
Resumo:
Submandibular glands of male rats were homogenized with 33 mM sodium potassium phosphate buffer, pH 6.5, containing 1 mM MgCl2 and 0.1 mM DTT and purified with ammonium sulphate, phosphocellulose chromatography, eluted with KC1 0.5 M, followed by Blue Sepharose CL-6B chromatography, eluted with NADH 0.5 mM. The enzyme kepts stable for 60 days when stored at -15-degrees-C in 33 mM phosphate buffer. In other experiment the enzyme was purified by oxamate-agarose chromatography from a crude extract of submandibular gland and the results obtained were better than by phosphocellulose and Sepharose CL-6B chromatography. The Km values for pyruvate. NADH, lactate and NAD+ were established. Sodium oxamate at 0.1 and 0.9 mM concentrations inhibited the LDH activity by 40 and 85%, respectively (competitive); with sodium oxalate the inhibition was of 30% (uncompetitive) and with 3-acetyl pyridine adenine dinucleotide was 80%.
Resumo:
Five new piperidine alkaloids were designed from natural (-)-3-O-acetyl-spectaline and (-)-spectaline that were obtained from the flowers of Senna spectabilis (sin. Cassia spectabilis, Leguminosae). Two semi-synthetic analogues (7 and 9) inhibited rat brain acetylcholinesterase, showing IC50 of 7.32 and 15.1 mu M, and were 21 and 9.5 times less potent against rat brain butyrylcholinesterase, respectively. Compound 9 (1 mg/kg, ip) was fully efficacious in reverting scopolamine-induced amnesia in mice. The two active compounds (7 and 9) did not show overt toxic effects at the doses tested in vivo. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with an unusual application for a copolymer of styrene-1 % divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)(3)-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to investigate the presence of contaminants in the mussel Perna perna from Sao Sebastiao Channel, São Paulo, Brazil, and to evaluate the effects of these contaminants on these organisms at biochemical (catalase [CAT], glutathione-S-transferase [GST], and cholinesterase [ChE]), cellular (neutral red retention time [NRRT] assay), and physiological (cardiac monitoring) levels. Two sampling surveys were performed (winter of 2001 and summer of 2002) at six stations along the channel: Cigarras, station 1; late Clube de Ilhabela, station 2; Oil Terminal, station 3; Toque Toque, station 4; Ponta da Sela, station 5 (reference station); and Taubate, station 6. Differences in CAT activity were observed between mussels from stations 3 and 5 during the winter, but no differences were detected in the summer. No differences in GST activity were found among stations during the winter, although animals from station 3 showed higher activity during the summer. The ChE activity was significantly higher in the mussels from stations I and 2 during the winter and from stations I and 3 during the summer. Organisms from stations I through 4 showed statistically lower NRRT in both seasons. Similar heart rates were observed in the mussels from all stations. Hydrocarbons were detected in organisms from all the stations in both seasons. During the winter, higher polycyclic aromatic hydrocarbon (PAH) levels were observed in organisms from station 3, whereas during the summer, higher levels of metals were found in organisms from stations 1, 3, and 4. The multivariate analyses showed a strong influence of PAHs on the winter biological results, but metals showed higher influence on these responses in the summer, indicating multiple contaminant sources.
Resumo:
In addition to 3-acetyl aleuritolic acid, 3 beta-acetyl-, cinnamoyl-, dihydrocinnamoyl-lupeol, a new ester of lupeol has been isolated from the stems of Cnidoscolus vitifolius. Its structure was established to be 3 beta-hexanoyl lupeol by spectroscopic methods. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We describe a combined stain for simultaneous demonstration of the preterminal axons and cholinesterase activity at myoneural junctions of mammalian muscles. This technique employs acetylthiocholine iodide as the substrate for cholinesterase activity and silver nitrate impregnation of preterminal axons. The procedure is rapid, simple and uses fresh muscles. Intramuscular nerves, preterminal axons and myoneural junctions are stained simultaneously brown or black with minimal background staining of connective tissue and muscle fibers.
Resumo:
Alzheimer's disease (AD) is a progressive neurodegenerative pathology with severe economic and social impact. There is currently no cure, although cholinesterase inhibitors provide effective temporary relief of symptoms in some patients. Nowadays, drug research and development are based on the cholinergic hypothesis that supports the cognition improvement by regulation of the synthesis and release of acetylcholine in the brain. There are only four commercial medicines approved for treatment of AD, and natural products have played an important alternative role in the research for new acetylcholinesterase inhibitors, as exemplified through the discovery of galantamine. This profile conducts us to give in this paper an overview relating the several classes of natural products with anti-cholinesterasic activity as potential templates to the design of new selective and powerful anti-Alzheimer drugs.
Resumo:
Histamine release from guinea pig heart treated with compound 48/80 was potentiated by the cyclooxygenase inhibitors indomethacin and piroxicam but not by aspirin or phenylbutazone. This differential effect suggests that the potentiation is not merely due to an inhibition of prostaglandin synthesis. Piroxicam potentiated the histamine release induced by cardiac anaphylaxis whereas indomethacin reduced this effect. The SRS-A antagonist FPL 55712 inhibited histamine release induced by cardiac anaphylaxis, but not that evoked by compound 48/80, and also prevented the potentiation due to indomethacin and piroxicam. In total, these data suggest that the potentiation of histamine release by piroxicam and indomethacin is probably due to a diversion of arachidonic acid metabolism from the cyclooxygenase to the lipoxygenase pathways. The resulting lipoxygenase products may then regulate histamine release, with the secretion due to antigen being more sensitive to such modulation than that evoked by compound 48/80.