999 resultados para Accumulation rate, planktic foraminiferal mass
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
Variations in primary productivity (PP) have been reconstructed in eutrophic, mesotrophic and oligotrophic parts of the Arabian Sea over the past 135 000 years applying principal component analysis and transfer function to planktic foraminiferal assemblages. Temporal variation in paleoproductivity is most pronounced in the mesotrophic northern (NAST site) and oligotrophic eastern (EAST site) Arabian Sea, and comparatively weak in the western eutrophic GeoB 3011-1 site in the upwelling area off Oman. Higher PP during interglacials (250-320 g C/m**2 year) than during cold stages (210-270 g C/m**2 year) at GeoB 3011-1 could have been caused by a strengthened upwelling during intensified summer monsoons and increased wind velocities. At NAST, during interglacials, PP is estimated to exceed g C/m**2 year 1, and during glacials to be as low as 140-180 g C/m**2 year. These fluctuations may result from a (1) varying impact of filaments that are associated to the Oman coastal upwelling, and (2) from open-ocean upwelling associated to the Findlater Jet. At EAST, highest productivity of about 380 g C/m**2 year is documented for the transition from isotope stage 5 to 4. We suggest that during isotope stages 2, 4, 5.2, the transition 5/4, and the end of stage 6, deep mixing of surface waters was caused by moderate to strong winter monsoons, and induced an injection of nutrients into the euphotic layer leading to enhanced primary production. The deepening of the mixed layer during these intervals is confirmed by an increased concentration of deep-dwelling planktic foraminiferal species. A high-productivity event in stage 3, displayed by estimated PP values, and by planktic foraminifera and radiolaria flux and accumulation rate, likely resulted from a combination of intensified SW monsoons with moderate to strong NE monsoons. Differential response of Globigerina bulloides, Globigerinita glutinata and mixed layer species to the availability of food is suited to subdivide productivity regimes on a temporal and spatial scale.
Resumo:
Drilling on the Iberia Abyssal Plain during Ocean Drilling Program Leg 173 allowed us to recover Upper Cretaceous through Paleocene sediments at Sites 1068 and 1069 and only upper Paleocene sediments at Site 1067, which expands considerably the Upper Cretaceous to Paleocene record for this region. Of these three sites, Site 1068 recovered uppermost Cretaceous sediments as well as the most complete Paleocene record, whereas Site 1067 yielded only uppermost Paleocene sediments (Zone CP8). Site 1069 provided a rather complete upper Campanian through Maastrichtian section but a discontinuous Paleocene record. After a detailed calcareous nannofossil biostratigraphy was documented in distribution charts, we calculated mass accumulation rates for Holes 1068A and 1069A. Sediments in Hole 1068A apparently record the final stages of burial of a high basement block by turbidity flows. Accumulation rates through the Upper Cretaceous indicate relatively high rates, 0.95 g/cm**2/k.y., but may be unreliable because of the lack of datum points and/or possible hiatuses. Accumulation rates in the Paleocene section of Hole 1068A fluctuated every few million years from lower (~0.35 g/cm**2/k.y.) to higher rates (~0.85 g/cm**2/k.y.) until the latest Paleocene, when rates increased to an average of ~2.0 g/cm**2/k.y. Mass accumulation rates for the Upper Cretaceous in Hole 1069A indicate a steady rate of ~0.60 g/cm**2/k.y. from 75 to 72 Ma. There may have been one or more hiatuses between 72 and 68 Ma (combined Zone CC24 through Subzone CC25b), as indicated by the very low accumulation rate of 0.15 g/cm**2/k.y. The Paleocene section of Hole 1069A does not show the same continuous record, which may result from fluctuations in the carbonate compensation depth and poor recovery (average = 40%). Zones CP4 and CP5 are missing within a barren interval; this and numerous other barren intervals affect the precision of the nannofossil zonation and calculation of mass accumulation rates. However, in spite of these missing zones, mass accumulation rates do not seem to indicate the presence of hiatuses as the rates for this barren interval average ~1.0 g/cm**2/k.y. This study set out to test the hypothesis that a reliable biostratigraphic record could be constructed from sediments derived from turbidity flows deposited below the carbonate compensation depth. As illustrated here, not only could a reliable biostratigraphic record be determined from these sediments, but sedimentation and mass accumulation rates could also be determined, allowing inferences to be drawn concerning the sedimentary history of this passive margin. The reliability of this record is confirmed by independent verification by the establishment of a magnetostratigraphy for the same cores.