983 resultados para ASSEMBLED MOLECULAR NANOSTRUCTURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dodecylamine was successfully intercalated into the layer space of kaolinite by utilizing the methanol treated kaolinite–dimethyl sulfoxide (DMSO) intercalation complex as an intermediate. The basal spacing of kaolinite, measured by X-ray diffraction (XRD), increased from 0.72 nm to 4.29 nm after the intercalation of dodecylamine. Also, the significant variation observed in the Fourier Transform Infrared Spectroscopy (FTIR) spectra of kaolinite when intercalated with dodecylamine verified the feasibility of intercalation of dodecylamine into kaolinite. Isothermal-isobaric (NPT) molecular dynamics simulation with the use of Dreiding force field was performed to probe into the layering behavior and structure of nanoconfined dodecylamine in the kaolinite gallery. The concentration profiles of the nitrogen atom, methyl group and methylene group of intercalated dodecylamine molecules in the direction perpendicular to the kaolinite basal surface indicated that the alkyl chains within the interlayer space of kaolinite exhibited an obvious layering structure. However, the unified bilayer, pseudo-trilayer, or paraffin-type arrangements of alkyl chains deduced based on their chain length combined with the measured basal spacing of organoclays were not found in this study. The alkyl chains aggregated to a mixture of ordered paraffin-type-like structure and disordered gauche conformation in the middle interlayer space of kaolinite, and some alkyl chains arranged in two bilayer structures, in which one was close to the silica tetrahedron surface, and the other was close to the alumina octahedron surface with their alkyl chains parallel to the kaolinite basal surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular doping and detection are at the forefront of graphene research, a topic of great interest in physical and materials science. Molecules adsorb strongly on graphene, leading to a change in electrical conductivity at room temperature. However, a common impediment for practical applications reported by all studies to date is the excessively slow rate of desorption of important reactive gases such as ammonia and nitrogen dioxide. Annealing at high temperatures, or exposure to strong ultraviolet light under vacuum, is employed to facilitate desorption of these gases. In this article, the molecules adsorbed on graphene nanoflakes and on chemically derived graphene-nanomesh flakes are displaced rapidly at room temperature in air by the use of gaseous polar molecules such as water and ethanol. The mechanism for desorption is proposed to arise from the electrostatic forces exerted by the polar molecules, which decouples the overlap between substrate defect states, molecule states, and graphene states near the Fermi level. Using chemiresistors prepared from water-based dispersions of single-layer graphene on mesoporous alumina membranes, the study further shows that the edges of the graphene flakes (showing p-type responses to NO2 and NH3) and the edges of graphene nanomesh structures (showing n-type responses to NO2 and NH3) have enhanced sensitivity. The measured responses towards gases are comparable to or better than those which have been obtained using devices that are more sophisticated. The higher sensitivity and rapid regeneration of the sensor at room temperature provides a clear advancement towards practical molecule detection using graphene-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma-based techniques offer many unique possibilities for the synthesis of various nanostructures both on the surface and in the plasma bulk. In contrast to the conventional chemical vapor deposition and some other techniques, plasma-based processes ensure high level of controllability, good quality of the produced nanomaterials, and reduced environmental risk. In this work, the authors briefly review the unique features of the plasma-enhanced chemical vapor deposition approaches, namely, the techniques based on inductively coupled, microwave, and arc discharges. Specifically, the authors consider the plasmas with the ion/electron density ranging from 10^10 to 10^14 cm−3, electron energy in the discharge up to ∼10 eV, and the operating pressure ranging from 1 to 10^4 Pa (up to 105 Pa for the atmospheric-pressure arc discharges). The operating frequencies of the discharges considered range from 460 kHz for the inductively coupled plasmas, and up to 2.45 GHz for the microwave plasmas. The features of the direct-current arc discharges are also examined. The authors also discuss the principles of operation of these systems, as well as the effects of the key plasma parameters on the conditions of nucleation and growth of the carbon nanostructures, mainly carbon nanotubes and graphene. Advantages and disadvantages of these plasma systems are considered. Future trends in the development of these plasma-based systems are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44+ progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44+p27+ cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27+ cells and their proliferation. Our results suggest that pathways controlling p27+ mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of independent control of the surface fluxes of energy and hydrogen-containing radicals, thus enabling selective control of the nanostructure heating and passivation, is demonstrated. In situ energy flux measurements reveal that even a small addition of H2 to low-pressure Ar plasmas leads to a dramatic increase in the energy deposition through H recombination on the surface. The heat release is quenched by a sequential addition of a hydrocarbon precursor while the surface passivation remains effective. Such selective control offers an effective mechanism for deterministic control of the growth shape, crystallinity, and density of nanostructures in plasma-aided nanofabrication. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to control the electric resistivity-temperature dependence of the nanosized resistive components made using hierarchical multilevel arrays of self-assembled gold nanoparticles prepared by multiple deposition/annealing is demonstrated. It is experimentally shown that the hierarchical three-level patterns, where the nanoparticles of sizes ranging from several nanometers to several tens of nanometer play a competitive roles in the electric conductivity, demonstrate sharp changes in the activation energy. These patterns can be used for the precise tuning of the resistivity-temperature behavior of nanoelectronic components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using advanced visualization techniques, a comprehensive visualization of all the stages of the self-organized growth of internetworked nanostructures on plasma-exposed surface has been made. Atomistic kinetic Monte Carlo simulation for the initial stage of deposition, with 3-D visualization of the whole system and half-tone visualization of the density field of the adsorbed atoms, makes it possible to implement a multiscale predictive modeling of the development of the nanoscale system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high level of control over quantum dot (QD) properties such as size and composition during fabrication is required to precisely tune the eventual electronic properties of the QD. Nanoscale synthesis efforts and theoretical studies of electronic properties are traditionally treated quite separately. In this paper, a combinatorial approach has been taken to relate the process synthesis parameters and the electron confinement properties of the QDs. First, hybrid numerical calculations with different influx parameters for Si1-x Cx QDs were carried out to simulate the changes in carbon content x and size. Second, the ionization energy theory was applied to understand the electronic properties of Si1-x Cx QDs. Third, stoichiometric (x=0.5) silicon carbide QDs were grown by means of inductively coupled plasma-assisted rf magnetron sputtering. Finally, the effect of QD size and elemental composition were then incorporated in the ionization energy theory to explain the evolution of the Si1-x Cx photoluminescence spectra. These results are important for the development of deterministic synthesis approaches of self-assembled nanoscale quantum confinement structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly of size-uniform and spatially ordered quantum dot (QD) arrays is one of the major challenges in the development of the new generation of semiconducting nanoelectronic and photonic devices. Assembly of Ge QD (in the ∼5-20 nm size range) arrays from randomly generated position and size-nonuniform nanodot patterns on plasma-exposed Si (100) surfaces is studied using hybrid multiscale numerical simulations. It is shown, by properly manipulating the incoming ion/neutral flux from the plasma and the surface temperature, the uniformity of the nanodot size within the array can be improved by 34%-53%, with the best improvement achieved at low surface temperatures and high external incoming fluxes, which are intrinsic to plasma-aided processes. Using a plasma-based process also leads to an improvement (∼22% at 700 K surface temperature and 0.1 MLs incoming flux from the plasma) of the spatial order of a randomly sampled nanodot ensemble, which self-organizes to position the dots equidistantly to their neighbors within the array. Remarkable improvements in QD ordering and size uniformity can be achieved at high growth rates (a few nms) and a surface temperature as low as 600 K, which broadens the range of suitable substrates to temperature-sensitive ultrathin nanofilms and polymers. The results of this study are generic, can also be applied to nonplasma-based techniques, and as such contributes to the development of deterministic strategies of nanoassembly of self-ordered arrays of size-uniform QDs, in the size range where nanodot ordering cannot be achieved by presently available pattern delineation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns. The use of highly ionized carbon flux allows formation of a nanotube array with a very narrow height distribution of half-width 7 nm. Similar results are obtained for carbon nanocone arrays, with an even narrower height distribution, using a highly ionized carbon flux. As the deposition time increases, nanostructure arrays develop without widening the height distribution when the flux ionization degree is high, in contrast to the fairly broad nanostructure height distributions obtained when the degree of ionization is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size-uniform Si nanodots (NDs) are synthesized on an AlN buffer layer at low Si(111) substrate temperatures using inductively coupled plasma-assisted magnetron sputtering deposition. High-resolution electron microscopy reveals that the sizes of the Si NDs range from 9 to 30 nm. Room-temperature photoluminescence (PL) spectra indicate that the energy peak shifts from 738 to 778 nm with increasing the ND size. In this system, the quantum confinement effect is fairly strong even for relatively large (up to 25 nm in diameter) NDs, which is promising for the development of the next-generation all-Si tandem solar cells capable of effectively capturing sunlight photons with the energies between 1.7 (infrared: large NDs) and 3.4 eV (ultraviolet: small NDs). The strength of the resulting electron confinement in the Si/AlN ND system is evaluated and justified by analyzing the measured PL spectra using the ionization energy theory approximation.