893 resultados para AL-2004-1


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Twenty-eight core catcher samples were provided to the author by the shipboard party for evaluation of fossil diatoms. Samples are from Ocean Drilling Program Leg 207 Holes 1257A, 1257B, 1257C, and 1258A. The samples range from 50 to 112 meters below the seafloor (mbsf) at Site 1257 and from ~22 to 60 mbsf at Site 1258. At Site 1257, samples range in age from middle Eocene (foraminifer Zone P14-13) to late Paleocene (mid-foraminifer Zone P4). At Site 1258, the samples range from middle Eocene (foraminifer Zone P11) to early Eocene (foraminifer Zone P5) according to the preliminary biostratigraphic reports (Erbacher, Mosher, Malone, et al., 2004, doi:10.2973/odp.proc.ir.207.2004). All samples were processed at Florida State University Antarctic Research Facility. Treatment included acidization and sieving through stacked 38- and 63-µm sieves. Strew slides were made from each fraction and the catcher pan. A Zeiss Photoscope II microscope was used for examination of the prepared slides. Samples from Holes 1257A, 1257B, and 1257C showed that most of the samples are barren of siliceous microfossils. Only a few radiolarians and fragments of radiolarians were observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mouth area of the North (Severnaya) Dvina River is characterized by a high concentrations of methane in water (from 1.0 to 165.4 µl/l) and bottom sediments (from 14 to 65000 µl/kg), being quite comparable to productive mouth areas of rivers from the temperate zone. Maximum methane concentrations in water and sediments were registered in the delta in segments of channels and branches with low rates of tidal and runoff currents, where domestic and industrial wastewaters are supplied. In the riverine and marine water mixing zone with its upper boundary, locating far into the delta and moving depending on a phase of the tidal cycle, decrease of methane concentration with salinity increase was observed. The prevailing role in formation of the methane concentration level in water of the mouth area pertains to bottom sediments, which is indicated by close correlation between gas concentrations in these two media. Existence of periodicity in variations of methane concentration in river water downstream caused by tidal effects was found.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

D18O values of nine tropical-subtropical planktonic foraminiferal species with different preferential habitat depths collected from 62 core-top samples along an east-west transect across the tropical Atlantic/Caribbean were used to test the applicability of interspecific d18O gradients for reconstructions of tropical upper ocean stratification. In general, the d18O difference (Delta d18O) between intermediate- and shallow-dwelling species decreases, and Delta d18O between deep and intermediate dwellers increases with increasing thermocline depth towards the west. The statistical significance of regional differences in Delta d18O highlights Delta d18O between the intermediate dwellers (in particular Globorotalia scitula and Globorotalia tumida) and the shallow dweller Globigerinoides ruber pink, as well as Delta d18O between the deep dwellers Globorotalia crassaformis or Globorotalia truncatulinoides dextral and intermediate dwellers as most sensitive to changes in tropical Atlantic thermocline depth. Based on the observed regional variations in interspecific Delta d18O, we propose a multispecies stratification index "STRAtrop" = (d18Ointermediate - d18Oshallow) / (d18Odeep - d18Oshallow) for the tropical ocean. Statistically significant differences in STRAtrop values between the E-Atlantic and the Caribbean suggest that this index may be a useful tool to monitor variations in tropical upper ocean stratification in the geological record.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming (Graversen et al., 2008, doi:10.1038/nature06502) and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized (Kitchell and Clark, 1982, doi:10.1016/0031-0182(82)90087-6). Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre (Dore et al., 2008, doi:10.1016/j.pocean.2007.10.002), or those indicated for the Mediterranean sapropels (Kemp et al., 1999, doi:10.1038/18001). With increased CO2 levels and warming currently driving increased stratification in the global ocean (Sarmiento et al., 1998, doi:10.1038/30455), this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean (Falcon-Lang et al., 2004, doi:10.1016/j.palaeo.2004.05.016; Amiot et al., 2004, doi:10.1016/j.epsl.2004.07.015; Otto-Bliesner et al., 2002, doi:10.1029/2001JD000821), rather than recent suggestions of a 15 °C mean annual temperature at this time (Jenkyns et al., 2004, doi:10.1038/nature03143).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[1] Planktonic d18O and Mg/Ca-derived sea surface temperature (SST) records from the Agulhas Corridor off South Africa display a progressive increase of SST during glacial periods of the last three climatic cycles. The SST increases of up to 4°C coincide with increased abundance of subtropical planktonic foraminiferal marker species which indicates a progressive warming due to an increased influence of subtropical waters at the core sites. Mg/Ca-derived SST maximizes during glacial maxima and glacial Terminations to values about 2.5°C above full-interglacial SST. The paired planktonic d18O and Mg/Ca-derived SST records yield glacial seawater d18O anomalies of up to 0.8 per mill, indicating measurably higher surface salinities during these periods. The SST pattern along our record is markedly different from a UK'37-derived SST record at a nearby core location in the Agulhas Corridor that displays SST maxima only during glacial Terminations. Possible explanations are lateral alkenone advection by the vigorous regional ocean currents or the development of SST contrasts during glacials in association with seasonal changes of Agulhas water transports and lateral shifts of the Agulhas retroflection. The different SST reconstructions derived from UK'37 and Mg/Ca pose a significant challenge to the interpretation of the proxy records and demonstrate that the reconstruction of the Agulhas Current and interocean salt leakage is not as straightforward as previously suggested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phytoplankton composition and biomass was investigated across the southern Indian Ocean. Phytoplankton composition was determined from pigment analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX and, in addition, by examination in the microscope. The different plankton communities detected reflected the different water masses along a transect from Cape Town, South Africa, to Broome, Australia. The first station was influenced by the Agulhas Current with a very deep mixed surface layer. Based on pigment analysis this station was dominated by haptophytes, pelagophytes, cyanobacteria, and prasinophytes. Sub-Antarctic waters of the Southern Ocean were encountered at the next station, where new nutrients were intruded to the surface layer and the total Chl a concentration reached high concentrations of 1.7 µg Chl a/L with increased proportions of diatoms and dinoflagellates. The third station was also influenced by Southern Ocean waters, but located in a transition area on the boundary to subtropical water. Prochlorophytes appeared in the samples and Chl a was low, i.e., 0.3 µg/L in the surface with prevalence of haptophytes, pelagophytes, and cyanobacteria. The next two stations were located in the subtropical gyre with little mixing and general oligotrophic conditions where prochlorophytes, haptophytes and pelagophytes dominated. The last two stations were located in tropical waters influenced by down-welling of the Leeuwin Current and particularly prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensu Zapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated in the subtrophic and oligotrophic eastern Indian Ocean where Chl a was low, i.e., 0.043-0.086 µg total Chl a/L in the surface, and up to 0.4 µg Chl a/L at deep Chl a maximum. From the pigment analyses it was found that the dinoflagellates of unknown trophy enumerated in the microscope at the oligotrophic stations were possibly heterotrophic or mixotrophic. Presence of zeaxanthin containing heterotrophic bacteria may have increased the abundance of cyanobacteria determined by CHEMTAX.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.