976 resultados para ADSORPTIVE STRIPPING VOLTAMMETRY
Resumo:
Consideration of theoretical calculations \[E3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)\] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) \[(HC equivalent to C)(2)C=C=C\](-.) \[from the reaction between (HC equivalent to C)(3)COCH3 and HO- \], (ii) \[HC=C=C=C=C=C=CH\](-.) \[from the reaction between HC equivalent to C-C equivalent to C-CD(OH)-C equivalent to CH and HO-\], (iii) \[C=C=C=C=C=C=CH2\](-.) \[from the reaction between DC equivalent to C-C equivalent to C-C equivalent to C-CH2OCH2CH3 and HO-\], and (iv) \[C equivalent to C-CH2-C equivalent to C-C equivalent to C\](-.) \[from the bis desilylation reaction of (CH3)(3)Si-C equivalent to C-CH2-C equivalent to C-C equivalent to C-Si (CH3)(3)With SF6-.\]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10(-6) s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.
Resumo:
Consideration of theoretical calculations [B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) [(HC≡C)2C=C=C]-̇ [from the reaction between (HC≡C)3COCH3 and HO- ], (ii) [HC=C=C=C=C=C=CH]-̇ [from the reaction between HC≡C-C≡C- CD(OH)-C≡CH and HO-], (iii) [C=C=C=C=C=C=CH2]-̇ [from the reaction between DC≡C-C≡C- C≡C-CH2OCH2CH3 and HO-], and (iv) [C≡C-CH2-C≡C-C≡C]-̇ [from the bis desilylation reaction of (CH3)3Si-C≡C-CH2-C≡C-C≡C-Si (CH3)3 with SF6 -̇]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10-6 s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.
Resumo:
(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.
Resumo:
The synthesis of thiophene-containing second (G2) and third generation (G3) dendronized macromonomers with methacrylate polymerizable units as well as their corresponding dendronized polymers is reported. The dendrons are prepared from branched thiophene oligomers and are decorated with straight alkyl chains for solubility reasons. The polymerization reactions were done with AIBN as initiator and the polymers were characterized by NMR spectroscopy, elemental analysis and GPC. Molar masses are in the range of 2.2-5.4 × 105 g mol-1 (G2) and 1.3-3.0 × 104 g mol-1 (G3) for different runs. These polymers are investigated by cyclic voltammetry and optical spectroscopy.
Resumo:
Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO-LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1:2 donor-acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm-2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.
Resumo:
CdS and CdSe nanoparticles have been prepared using conducting poly(3-hexylthiophene) (P3HT) matrix with an objective to understand the effect of nanoparticles on the polymer matrix using electrochemical and spectroscopic techniques. The spectroscopic results reveal that the electronic structure of polymer is strongly influenced by the characteristics of embedded semiconducting nanoparticles. SEM and TEM images show the ordered morphology of the CdS and CdSe nanoparticles in presence of the polymer matrix. Cyclic voltammetry performed both in the presence and absence of light enables us to understand the redox changes in P3HT due to CdS and CdSe quantum dots such as the generation of free radical in the excited state and their electrochemical band gaps.
Resumo:
New push-pull copolymers based on thiophene (donor) and benzothiadiazole (acceptor) units, poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co- thiophene] (PT3B1) and poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] (PT2B2), are designed and synthesized via Stille and Suzuki coupling routes respectively. Gel permeation chromatography shows the number average molecular weights are 31100 and 8400 g mol-1 for the two polymers, respectively. Both polymers have shown absorption throughout a wide range of the UV-vis region, from 300 to 650 nm. A significant red shift of the absorption edge is observed in thin films compared to solution of the copolymers; the optical band gap is in the range of 1.7 to 1.8 eV. Cyclic voltammetry indicates reversible oxidation and reduction processes with HOMO energy levels calculated to be in the range of 5.2 to 5.4 eV. Upon testing both materials for organic field-effect transistors (OFETs), PT3B1 showed a hole mobility of 6.1 × 10-4 cm2 V-1 s -1, while PT2B2 did not show any field effect transport. Both copolymers displayed a photovoltaic response when combined with a methanofullerene as an electron acceptor. The best performance was achieved when the copolymer PT3B1 was blended with [70]PCBM in a 1:4 ratio, exhibiting a short-circuit current of 7.27 mA cm-2, an open circuit voltage of 0.85 V, and a fill factor of 41% yielding a power conversion efficiency of 2.54% under simulated air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm-2). Similar devices utilizing PT2B2 in place of PT3B1 demonstrated reduced performance with a short-circuit current of 4.8 mA cm -2, an open circuit voltage of 0.73 V, and a fill factor of 30% resulting in a power conversion efficiency of roughly 1.06%.
Resumo:
Methylene chloride (dichloromethane) is widely used as a solvent for stripping of paint, as industrial cleaning agent, for coating of pills in the pharmaceutical industry, and in the decaffeination of coffee. There is “sufficient evidence for the carcinogenicity” of methylene chloride in animals and “inadequate evidence for its carcinogenity in humans”, according to IARC (IARC 1987; CEC 1990).
Resumo:
BACKGROUND AND PURPOSE Varenicline, a neuronal nicotinic acetylcholine receptor (nAChR) modulator, decreases ethanol consumption in rodents and humans. The proposed mechanism of action for varenicline to reduce ethanol consumption has been through modulation of dopamine (DA) release in the nucleus accumbens (NAc) via α4*-containing nAChRs in the ventral tegmental area (VTA). However, presynaptic nAChRs on dopaminergic terminals in the NAc have been shown to directly modulate dopaminergic signalling independently of neuronal activity from the VTA. In this study, we determined whether nAChRs in the NAc play a role in varenicline’s effects on ethanol consumption. EXPERIMENTAL APPROACH Rats were trained to consume ethanol using the intermittent-access two-bottle choice protocol for 10 weeks. Ethanol intake was measured after varenicline or vehicle was microinfused into the NAc (core, shell or core-shell border) or the VTA (anterior or posterior). The effect of varenicline treatment on DA release in the NAc was measured using both in vivo microdialysis and in vitro fast-scan cyclic voltammetry (FSCV). KEY RESULTS Microinfusion of varenicline into the NAc core and core-shell border, but not into the NAc shell or VTA, reduced ethanol intake following long-term ethanol consumption. During microdialysis, a significant enhancement in accumbal DA release occurred following systemic administration of varenicline and FSCV showed that varenicline also altered the evoked release of DA in the NAc. CONCLUSION AND IMPLICATIONS Following long-term ethanol consumption, varenicline in the NAc reduces ethanol intake, suggesting that presynaptic nAChRs in the NAc are important for mediating varenicline’s effects on ethanol consumption.
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.
Resumo:
Self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was prepared on indium tin oxide (ITO) electrode by spontaneous adsorption from dimethylformamide (DMF) solution containing 4α-CoIITAPc. The SAM of 4α-CoIITAPc formed on ITO electrode was characterized by cyclic voltammetry, Raman and UV–visible spectroscopic techniques. The cyclic voltammogram (CV) of 4α-CoIITAPc SAM shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) was calculated by integrating the charge under the anodic wave corresponding to CoII oxidation and it was found to be 2.25 × 10−10 mol cm−2. Raman spectrum obtained for the SAM of 4α-CoIITAPc on ITO surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Further, the –NH2 bending mode of vibration was absent for the SAM of 4α-CoIITAPc on ITO surface which indirectly confirmed that all the amino groups of 4α-CoIITAPc are involved in bonding with ITO surface. UV–visible spectrum for the SAM of 4α-CoIITAPc on ITO surface shows an intense B-band, Q-band and n–π∗ transition with slight broadening when compared to that of 4α-CoIITAPc in DMF.
Resumo:
Self-assembled monomolecular films of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) and 2,9,16,23-tetraaminophthalocyanatocobalt(II) (4β-CoIITAPc) on Au surfaces were prepared by spontaneous adsorption from solution. These films were characterized by cyclic voltammetry and Raman spectroscopy. Both the surface coverage (Γ) and intensity of the in-plane stretching bands obtained from Raman studies vary for these monomolecular films, indicating different orientations adopted by them on Au surfaces. The 4α-CoIITAPc-modified electrode exhibits an E1/2 of 0.35 V, while the 4β-CoIITAPc-modified electrode exhibits an E1/2 of 0.19 V, corresponding to the CoII/CoIII redox couple in 0.1 M H2SO4. The Γ estimated from the charge associated with the oxidation of Co(II) gives (2.62 ± 0.10) × 10-11 mol cm-2 for 4α-CoIITAPc and (3.43 ± 0.14) × 10-10 mol cm-2 for 4β-CoIITAPc. In Raman spectral studies, the intensity ratio between in-plane phthalocyanine (Pc) stretching and the Au−N stretching was found to be 6.6 for 4β-CoIITAPc, while it was 1.6 for 4α-CoIITAPc. The obtained lower Γ and intensity ratio values suggest that 4α-CoIITAPc adopts nearly a parallel orientation on the Au surface, while the higher Γ and intensity ratio values suggest that 4β-CoIITAPc adopts a perpendicular orientation. The electrochemical reduction of dioxygen was carried out using these differently oriented Pc's in phosphate buffer solution (pH 7.2). Both the Pc's catalyze the reduction of dioxygen; however, the 4α-CoIITAPc-modified electrode greatly reduces the dioxygen reduction overpotential compared to 4β-CoIITAPc-modified and bare Au electrodes.
Resumo:
This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two single bondSH groups and the other single bondSH group is pointing away from the electrode surface. The free single bondSH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN)6]4−/3− was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (ks) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 × 10−3 cm s−1. The oxidation peak of AA at Au/HDT/AuNPs electrode was highly stable upon repeated potential cycling. Linear calibration plot was obtained for AA over the concentration range of 1–110 μM with a correlation coefficient of 0.9950. The detection limit of AA was found to be 1 μM. The common physiological interferents such as glucose, oxalate ions and urea do not show any interference within the detection limit of AA. The selectivity of the AuNPs modified electrode was illustrated by the determination of AA in the presence of uric acid.
Resumo:
This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-CoIITAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-CoIITAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.