995 resultados para 7140-225
Resumo:
Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.
Resumo:
This paper presents an optimization algorithm for an ammonia reactor based on a regression model relating the yield to several parameters, control inputs and disturbances. This model is derived from the data generated by hybrid simulation of the steady-state equations describing the reactor behaviour. The simplicity of the optimization program along with its ability to take into account constraints on flow variables make it best suited in supervisory control applications.
Resumo:
A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.
Resumo:
Mycotoxins are secondary metabolites of filamentous fungi. They pose a health risk to humans and animals due to their harmful biological properties and common occurrence in food and feed. Liquid chromatography/mass spectrometry (LC/MS) has gained popularity in the trace analysis of food contaminants. In this study, the applicability of the technique was evaluated in multi-residue methods of mycotoxins aiming at simultaneous detection of chemically diverse compounds. Methods were developed for rapid determination of toxins produced by fungal genera of Aspergillus, Fusarium, Penicillium and Claviceps from cheese, cereal based agar matrices and grains. Analytes were extracted from these matrices with organic solvents. Minimal sample clean-up was carried out before the analysis of the mycotoxins with reversed phase LC coupled to tandem MS (MS/MS). The methods were validated and applied for investigating mycotoxins in cheese and ergot alkaloid occurrence in Finnish grains. Additionally, the toxin production of two Fusarium species predominant in northern Europe was studied. Nine mycotoxins could be determined from cheese with the method developed. The limits of quantification (LOQ) allowed the quantification at concentrations varying from 0.6 to 5.0 µg/kg. The recoveries ranged between 96 and 143 %, and the within-day repeatability (as relative standard deviation, RSDr) between 2.3 and 12.1 %. Roquefortine C and mycophenolic acid could be detected at levels of 300 up to 12000 µg/kg in the mould cheese samples analysed. A total of 29 or 31 toxins could be analysed with the method developed for agar matrices and grains, with the LOQs ranging overall from 0.1 to 1250 µg/kg. The recoveries ranged generally between 44 and 139 %, and the RSDr between 2.0 and 38 %. Type-A trichothecenes and beauvericin were determined from the cereal based agar and grain cultures of F. sporotrichioides and F. langsethiae. T-2 toxin was the main metabolite, the average levels reaching 22000 µg/kg in the grain cultures after 28 days of incubation. The method developed for ten ergot alkaloids from grains allowed their quantification at levels varying from 0.01 to 10 µg/kg. The recoveries ranged from 51 to 139 %, and the RSDr from 0.6 to 13.9 %. Ergot alkaloids were measured in barley and rye at average levels of 59 and 720 µg/kg, respectively. The two most prevalent alkaloids were ergocornine and ergocristine. The LC/MS methods developed enabled rapid detection of mycotoxins in such applications where several toxins co-occurred. Generally, the performance of the methods was good, allowing reliable analysis of the mycotoxins of interest with sufficiently low quantification limits. However, the variation in validation results highlighted the challenges related to optimising this type of multi-residue methods. New data was obtained about the occurrence of mycotoxins in mould cheeses and of ergot alkaloids in Finnish grains. In addition, the study revealed the high mycotoxin-producing potential of two common fungi in Finnish crops. The information can be useful when risks related to fungal and mycotoxin contamination will be assessed.
Resumo:
This article deals with studies of the dilute solution properties of methyl methacrylate-acrylonitrile (MMA-AN) copolymer of 0.415 mole fraction (mf) of acrylonitrile composition. Mark—Houwink parameters for this copolymer have been evaluated in acetonitrile (MeCN), 2-butanone (MEK), dimethyl formamide (DMF), and γ-butyrolactone (γ-BL). The Mark-Houwink exponent a in all four solvents at all temperatures is larger than the corresponding values of the parent homopolymers. The solvent power is in the order of DMF < γ–BL < MEK < MeCN; [η] decreases with an increase in temperature, which is behavior characteristic of polymers in good solvent. The unperturbed dimensions (K0) values, obtained by the Stockmayer–Fixman method, are lower than those for the parent homopolymers and depend on solvent as well as temperature. The solute—solvent interaction parameter X1 values are close to 0.5; X1 is independent of temperature. The excess interaction parameter XABvalues are negative. The results for this copolymer system in regard to low second virial coefficient A2, large X1, and high a values suggest that the large extension of these copolymer chains is due to the unusual short-range interactions.
Resumo:
The Extended Hypercube is a new approach in multiprocessor architectures, which reduces the communication burden on the processor elements. We propose a scheme for implementing such an architecture using INMOS transputers as the processor and controller elements to achieve a very high computation to communication ratio.
Resumo:
The photocatalytic inactivation of Escherischia coli and Pichia Pastoris was studied with combustion synthesized titanium dioxide photocatalysts Three different combustion synthesized (CS) catalysts were used viz CS-TiO2 1% Ag substituted in TiO2 and 1% Ag impregnated in TiO2 All the combustion synthesized catalysts showed higher activity as compared to the activity observed with commercial Degussa P-25 TiO2 The effect of various parameters like catalyst loading different catalysts and initial cell concentration was studied At the optimum loading 1% Ag impregnated TiO2 showed the maximum efficiency and complete inactivation of both the microorganisms was observed within an hour of irradiation The morphology of inactivated cells was studied by inverted microscope and SEM From the images obtained it was hypothesized that damage to the cell wall was the main cause of cell inactivation The initial cell concentration had a prominent effect on the inactivation At a low initial cell concentration the complete inactivation of E cob and P pastoris was observed within 10 and 20 min respectively This shows that P pastoris has a stronger resistance towards photocatalytic inactivation than E cols The inactivation reactions were modeled with power law kinetics The order of reaction in case of E colt and P pastoris were determined as 1 20 and 1 08 respectively (C) 2010 Elsevier B V All rights reserved
Resumo:
Oxygen is shown to adsorb molecularly on a clean Cu(110) surface at 80 K and dissociate around 150 K forming atomic oxygen. Adsorption of oxygen on an HCl covered surface at low temperatures results in the formation of adsorbed hydroxyl groups and water in addition to adsorbed molecular oxygen. The molecular oxygen species is stable up to 190 K on the HCl covered surface.
Resumo:
The flow over a missile-shaped configuration is investigated by means of Schlieren visualization in short-duration facility producing free stream Mach numbers of 5.75 and 8. This visualization technique is demonstrated with a 41 degrees full apex angle blunt cone missile-shaped body mounted with and without cavity. Experiments are carried out with air as the test gas to visualize the flow field. The experimental results show a strong intensity variation in the deflection of light in a flow field, due to the flow compressibility. Shock stand-off distance measured with the Schlieren method is in good agreement with theory and computational fluid dynamic study for both the configurations. Magnitude of the shock oscillation for a cavity model may be greater than the case of a model without cavity. The picture of visualization shows that there is an outgoing and incoming flow closer to the cavity. Cavity flow oscillation was found to subside to steady flow with a decrease in the free stream Mach number.
Resumo:
In order to answer the practically important question of whether the down conductors of lightning protection systems to tall towers and buildings can be electrically isolated from the structure itself, this work is conducted. As a first step in this regard, it is presumed that the down conductor placed on metallic tower will be a pessimistic representation of the actual problem. This opinion was based on the fact that the proximity of heavy metallic structure will have a large damping effect. The post-stroke current distributions along the down conductors and towers, which can be quite different from that in the lightning channel, govern the post-stroke near field and the resulting gradient in the soil. Also, for a reliable estimation of the actual stroke current from the measured down conductor currents, it is essential to know the current distribution characteristics along the down conductors. In view of these, the present work attempts to deduce the post-stroke current and voltage distribution along typical down conductors and towers. A solution of the governing field equations on an electromagnetic model of the system is sought for the investigation. Simulation results providing the spatio-temporal distribution of the post-stroke current and voltage has provided very interesting results. It is concluded that it is almost impossible to achieve electrical isolation between the structure and the down conductor. Furthermore, there will be significant induction into the steel matrix of the supporting structure.
Resumo:
Large external memory bandwidth requirement leads to increased system power dissipation and cost in video coding application. Majority of the external memory traffic in video encoder is due to reference data accesses. We describe a lossy reference frame compression technique that can be used in video coding with minimal impact on quality while significantly reducing power and bandwidth requirement. The low cost transformless compression technique uses lossy reference for motion estimation to reduce memory traffic, and lossless reference for motion compensation (MC) to avoid drift. Thus, it is compatible with all existing video standards. We calculate the quantization error bound and show that by storing quantization error separately, bandwidth overhead due to MC can be reduced significantly. The technique meets key requirements specific to the video encode application. 24-39% reduction in peak bandwidth and 23-31% reduction in total average power consumption are observed for IBBP sequences.
Resumo:
The tracer diffusion coefficients of the elements as well as the integrated interdiffusion coefficients are determined for the Cu3Sn and Cu6Sn5 intermetallic compounds using incremental diffusion couples and Kirkendall marker shift measurements. The activation energies are determined for the former between 498 K and 623 K (225 A degrees C and 350 A degrees C) and for the latter between 423 K and 473 K (150 A degrees C and 200 A degrees C). Sn is found to be a slightly faster diffuser in Cu6Sn5, and Cu is found to be the faster diffuser in Cu3Sn. The results from the incremental couples are used to predict the behavior of a Cu/Sn couple where simultaneous growth of both intermetallics occurs. The waviness at the Cu3Sn/Cu6Sn5 interface and possible reasons for not finding Kirkendall markers in both intermetallics in the Cu/Sn couple are discussed.
Resumo:
While the endocrine role of oestrogen is well established, its function in follicular maturation as an autocrine or paracrine regulator is less well understood. This study was designed to delineate the requirement of oestrogen for follicular development in immature rats. Exogenous gonadotrophin (25 IU pregnant mare serum gonadotrophin (PMSG) per rat) was administered to 21- to 23-day old female rats to induce follicular growth and development. In the experimental animals, synthesis of oestrogen was blocked by implanting an Alzet pump containing the aromatase inhibitor (AI) CGS 16949A (fadrozole hydrochloride; 50 mu g/rat per day). The treatment resulted in blockade of the PMSG induced increase in both serum and intrafollicular oestrogen (>95%), thus leading to an inhibition in uterine weight increment. Compared with the controls, ovarian weight increased markedly in both the PMSG (295%)- and PMSG+AI (216%)-primed animals. There was no significant difference in either the proliferative capabilities of the ovarian granulosa cells or their responsiveness to human chorionic gonadotrophin (hCG; 200 pg/ml) and ovine FSH (20 ng/ml) between the PMSG- and PMSG+AI-treated groups. Histological examination of the ovary, however, indicated a decrease in the number of healthy antral follicles in the Al-treated group compared with the PMSG-primed animals but both the groups showed a percentage increase over the controls (PMSG, 225; PMSG+AI, 158). The responsiveness of the animals to an ovulatory dose of hCG was drastically reduced (>80% inhibition of ovulation) in the oestrogen-deprived animals; this could be overriden by exogenous administration of oestrogen. In conclusion, although blocking oestrogen synthesis in the PMSG-primed rat does not seem to alter the functional properties of the isolated granulosa cells in vitro there appears to be an effect on the number of follicles which complete maturation and are able to ovulate in vivo.