464 resultados para 3t3-f442a Preadipocytes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell adhesion peptide regulates various cellular functions like proliferation, attachment, and spreading. The cellular response to laminin peptide (PPFLMLLKGSTR), a motif of laminin-5 alpha3 chain, tethered to type I collagen, crosslinked using microbial transglutaminase (mTGase) was investigated. mTGase is an enzyme that initiates crosslinking by reacting with the glutamine and lysine residues on the collagen fibers stabilizing the molecular structure. In this study that tethering of the laminin peptide in a mTGase crosslinked collagen scaffold enhanced cell proliferation and attachment. Laminin peptide tethered crosslinked scaffold showed unaltered cell morphology of 3T3 fibroblasts when compared with collagen and crosslinked scaffold. The triple helical structure of collagen remained unaltered by the addition of laminin peptide. In addition a dose-dependent affinity of the laminin peptide towards collagen was seen. The degree of crosslinking was measured by amino acid analysis, differential scanning calorimeter and fourier transform infrared spectroscopy. Increased crosslinking was observed in mTGase crosslinked group. mTGase crosslinking showed higher shrinkage temperature. There was alteration in the fibrillar architecture due to the crosslinking activity of mTGase. Hence, the use of enzyme-mediated linking shows promise in tethering cell adhesive peptides through biodegradable scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial transglutaminase (mTGase) is an enzyme that introduces a covalent bond between peptide bound glutamine and lysine residues. Proteins cross-linked in this manner are often more resistant to proteolytic degradation and show increased tensile strength. This study evaluates the effects of mTGase mediated cross-linking of collagen on the cellular morphology, behaviour and viability of murine 3T3 fibroblasts following their seeding into collagen scaffolds. Additionally, cell mediated scaffold contraction, porosity and level of cross-linking of the scaffold has been analysed using image analysis software, scanning electron microscopy (SEM), colorimetric assays, and Fourier transform infrared spectroscopy (FTIR). We demonstrate that the biocompatibility and cellular morphology, when comparing cultures of fibroblasts integrated in mTGase cross-linked collagen scaffolds with the native collagen counterparts, remained unaffected. It has been also elicited that the structural characteristics of collagen have been preserved while introducing enzymatically resistant covalent bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The definitive goal of this research is to develop protein-based scaffolds for use in soft tissue regeneration, particularly in the field of dermal healing. The premise of this investigation was to characterize the mechanical properties of gelatin cross-linked with microbial transglutaminase (mTGase) and to investigate the cytocompatibility of mTGase cross-linked gelatin. Dynamic rheological analysis revealed a significant increase in the storage modulus and thermal stability of gelatin after cross-linking with mTGase. Static, unconfined compression tests showed an increase in Young's modulus of gelatin gels after mTGase cross-linking. A comparable increase in gel strength was observed with 0.03% mTGase and 0.25% glutaraldehyde cross-linked gelatin gels. In vitro studies using 3T3 fibroblasts indicated cytotoxicity at a concentration of 0.05% mTGase after 72 h. However, no significant inhibition of cell proliferation was seen with cells grown on lower concentrations of mTGase cross-linked gelatin substrates. The mechanical improvement and cytocompatibility of mTGase cross-linked gelatin suggests mTGase has potential for use in stabilizing gelatin gels for tissue-engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient means of evaluating potential biomaterials is to use the in vitro fibroblast cell culture model. However, the chemistry which influences cell adhesion on polymer substrates is poorly understood. The work in this thesis aims to rationalise several theories of current opinion and introduce new chemical techniques that may predict cellular behaviour. The keratoprosthesis is a typical example of the need to be able to manipulate cell adhesion of materials since both adhesive and non adhesive sections are needed for proper integration and optical function. Calcein AM/ethidium homodimer-1 and DAPI assays were carried out using 3T3 and EKl.BR cells. Poly(HEMA) was found to be the most cell adhesive hydrogel tested. The reactivity of monomers and the resulting sequence distribution were found to affect surface properties and this may explain the poor levels of cell adhesion seen on NVP/MMA copolymers. Surface free energy is shown to be dependent on the polar and non polar groups present along the backbone chain of the polymers. Dehydrated and hydrated contact angle measurements show the effect of rotation of surface groups around the backbone chain. This effect is most apparent on hydrogels containing methacrylic acid. Dynamic contact angle measurements confirm sequence distribution irregularities and demonstrate the mobility of surface groups. Incorporation of NVI or DEAEMA into the hydrogels does not affect the mobility of the surface groups despite their bulkiness. Foetal calf serum was used for the first time as a test solution in an attempt to mimic a biological environment during surface experiments. A Vroman effect may be present, and may involve different surface proteins for each material tested. This interdisciplinary study combines surface characterisation and biological testing to further the knowledge of the biomaterial/host interface. Surface chemistry techniques appear to be insufficiently sensitive to predict cellular behaviour. The degree of ionisation of hydrogels containing ionic groups depends on the nature of the functional groups as well as the concentration and this is an important parameter to consider when comparing charged materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis concerns cell adhesion to polymer surfaces with an experimental emphasis on hydrogels. The thesis begins with a review of the literature and a synthesis of recent evidence to describe the process of cell adhesion in a given situation. The importance of understanding integrin-adhesion protein interactions and adhesion protein-surface interactions is emphasised. The experimental chapters describe three areas of investigation. Firstly, in vitro cell culture techniques are used to explore a variety of surfaces including polyethylene glycol methacrylate (PEGMA) substituted hydrogels, sequence distribution modified hydrogels and worn contact lenses. Cell adhesion to PEGMA substituted gels is found to decrease with increases in polyethylene oxide chain length and correlations are made between sequence distribution and adhesion. Worn contact lenses are investigated for their cell adhesion properties in the presence of antibodies to specific adhesion proteins, demonstrating the presence of vitronectin and fibronectin on the lenses. The second experimental chapter addresses divalent cation regulation of integrin mediated cell adhesion. Several cell types and various cations are used. Zinc, previously not regarded as an important cation in the process, is found to inhibit 3T3 cell adhesion to vitronectin that is promoted by other divalent cations. The final experimental chapter concerns cell adhesion and growth on macroporous hydrogels. A variety of freeze-thaw formed porous gels are investiated and found generally to promote cell growth rate.Interpenetrating networkbased gels (IPN) are made porous by elution of dextrin particles of varying size and loading density. These materials provide the basis for synthetic cartilage. Cartilage cells (chondrocytes) plated onto the surface of the porous IPN materials maintain a rounded shape and hence phenotypic function when a critical pore size and density is achieved. In this way, a prospective implant, made porous at the perpendicular edges contacting natural cartilage can be both mechanically stabilised and encourage the maintenance of normal matrix production at the tissue interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-operative infections resulting from total hip arthroplasty are caused by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa entering the wound perioperatively or by haemetogenous spread from distant loci of infection. They can endanger patient health and require expensive surgical revision procedures. Gentamicin impregnated poly (methyl methacrylate) bone cement is traditionally used for treatment but is often removed due to harbouring bacterial growth, while bacterial resistance to gentamicin is increasing. The aim of this work was to encapsulate the antibiotics vancomycin, ciprofloxacin and rifampicin within sustained release microspheres composed of the biodegradable polymer poly (dl-lactide-co-glycolide) [PLCG] 75:25. Topical administration to the wound in hydroxypropylmethylcellulose gel should achieve high local antibiotic concentrations while the two week in vivo half life of PLCG 75:25 removes the need for expensive surgical retrieval operations. Unloaded and 20% w/w antibiotic loaded PLCG 75:25 microspheres were fabricated using a Water in Oil emulsification with solvent evaporation technique. Microspheres were spherical in shape with a honeycomb-like internal matrix and showed reproducible physical properties. The kinetics of in vitro antibiotic release into newborn calf serum (NCS) and Hank's balanced salt solution (HBSS) at 37°C were measured using a radial diffusion assay. Generally, the day to day concentration of each antibiotic released into NCS over a 30 day period was in excess of that required to kill St. aureus and Ps. auruginosa. Only limited microsphere biodegradation had occurred after 30 days of in vitro incubation in NCS and HBSS at 37°C. The moderate in vitro cytotoxicity of 20% w/w antibiotic loaded microspheres to cultured 3T3-L1 cells was antibiotic induced. In conclusion, generated data indicate the potential for 20% w/w antibiotic loaded microspheres to improve the present treatment regimens for infections occurring after total hip arthroplasty such that future work should focus on gaining industrial collaboration for commercial exploitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia comprises unintentional and debilitating weight loss associated with certain tumour types. Fat loss in cachexia is mediated by a 43kDa Lipid Mobilising Factor (LMF) sharing homology with endogenous Zinc-α2-Glycoprotein (ZAG). LMF and ZAG induced significant lipolysis in isolated epidydimal adipose tissue. This is attenuated by co-incubation with 10μM of antagonist SR59230A and partially attenuated by 25μM PD098059 (indicating β3-AR and MAPK involvement respectively). LMF/ZAG induced in vitro lipid depletion in differentiated 3T3-L1 adipocytes that seen to comprise a significant increase in lipolysis (p<0.01), with only a modest decrease in lipid synthesis (p=0.09). ZAG significantly increased in vitro protein synthesis (p<0.01) in C2C12 myotubes (without an effect on protein degradation). This increase was activated at transcription and attenuated by co-incubation with 10μM SR59230A. Proteolytic digestion of ZAG and LMF followed by sephadex G50 chromatography yielded active fragments of 6-15kDa, indication the entire molecule was not required for bioactivity. Cachexigenic MAC16 cells demonstrated significant in vitro ZAG expression over non-cachexigenic MAC13 cells (p<0.001). WAT and BAT excised from MAC16 mice of varying weight loss demonstrated increased ZAG expression compared to controls. Dosing of NMRI mice with s/c ZAG failed to reproduce this up-regulation, thus another cachectic factor is responsible. 0.58nM LMF conferred significant protection against hydrogen peroxide, paraquat and bleomycin-induced oxidative stress in the non-cachexigenic MAC13 cell line. This protection was attenuated by 10μM SR59230A indicating a β3-AR mediated effect. In addition, 0.58nM LMF significantly up regulated UCP2 expression (p<0.001), (a mitochondrial protein implicated in the detoxification of ROS) implying this to be the mechanism by which survival was achieved. In vitro, LMF caused significant up-regulation of UCP1 in BAT and UCP2 and 3 in C2C12 myotubes. This increase in uncoupling protein expression further potentiates the negative energy balance and wasting observed in cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and characterisation of collagen: PCL, gelatin: PCL and gelatin/collagen:PCL biocomposites for manufacture of tissue engineered skin substitutes are reported. Films of collagen: PLC, gelatin: PCL (1:4, 1:8 and 1:20 w/w) and gelatin/collagen:PCL (1:8 and 1:20 w/w) biocomposites were prepared by impregnation of lyophilised collagen and/or gelatin mats by PCL solutions followed by solvent evaporation. In vitro assays of total protein release of collagen:PCL and gelatin: PCL biocomposite films revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the biocomposite samples that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. Good compatibility of all biocomposite groups was proven by interaction with 3T3 fibroblasts, normal human epidermal keratinocytes (NHEK), and primary human epidermal keratinocytes (PHEK) and dermal fibroblasts (PHDF) in vitro respectively. The 1:20 collagen: PCL materials exhibiting good cell growth curves and mechanical characteristics were selected for engineering of skin substitutes in this work. The tissue-engineered skin model based on single-donor PHEK and PHDF with differentiated confluent epidermal layer and fibrous porous dermal layer was then developed successfully in vitro proven by SEM and immunohistochemistry assay. The following in vivo animal study on athymic mice revealed early complete wound healing in 10 days and good integration of co-cultured skin substitutes with adjacent mice skin structures. Thus the co-cultured skin substitutes based on 1:20 collagen: PCL biocomposite membranes was proven in principle. The approach to skin modelling reported here may find application in wound treatment, gene therapy and screening of new pharmaceuticals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant tyrosine protein kinase activity has been implicated in the formation and maintenance of malignancy and so presents a potential target for cancer chemotherapy. Quercetin, a naturally occuring flavonoid, inhibits the tyrosine protein kinase encoded by the Rous sarcoma virus but also exhibits many other effects. Analogues of this compound were synthesised by the acylation of suitable 2-hydroxyacetophenones with appropriately substituted aromatic (or alicyclic) acid chlorides, followed by base catalysed rearrangement to the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones. Acid catalysed ring closure furnished flavones. The majority of the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones were shown by NMR to exist in the enol form. This was supported by the crystal structure of 1-(2-hydroxy-4-methoxyphenyl)-3-phenylpropan-1,3-dione. In contrast, 1.(4,6-dimethoxy-2-hydroxyphenyl)-3-phenylpropan-1,3-dione did not exhibit keto-enol tautomerism in the NMR spectrum and was shown in its crystal structure to assume a twisted conformation. Assessment of the biological activity of the analogues of quercetin was carried out using whole cells and the kinase domain of the tyrosine protein kinase encoded by the Abelson murine leukaemia virus, ptab150 kinase. Single cell suspension cultures and clonogenic potential of murine fibroblasts transformed by the Abelson Murine leukaemia virus (ANN-1 cells) did not indicate the existence of any structure activity relationship required for cytotoxicity or cytostasis. No selective toxicity was apparent when the `normal' parent cell line, (3T3), was used to assess the cytotoxic potential of quercetin. The ICS50 for these compounds were generally in the region of 1-100M. The potential for these compounds to inhibit ptab150 kinase was determined. A definite substitution requirement emerged from these experiments indicating a necessity for substituents in the A ring or in the 3-position of the flavone nucleus. Kinetic data showed these inhibitors to be competitive for ATP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Phenylbenzothiazoles have structural similarities to the antioestrogenic 2-phenylindole, zindoxifene and to the oestrogenic isoflavone, genistein which also inhibits tyrosine kinases. Hydroxylated 2-phenylbenzothiazole derivatives were therefore produced and tested for oestrogenic and tyrosine kinase inhibitory activity. Synthesis of methoxy substituted 2-phenylbenzothiazoles was via the Jacobson method, demethylation being effected by boron tribromide at -70oC. Three amino substituted 2-phenylbenzothiazoles were also synthesised and tested for activity. Data is presented for oestrogen receptor binding activity, aromatase inhibitory activity, epidermal growth factor receptor tyrosine kinase (EGFRTK) inhibitory activity and cytotoxicity to ANN-1, 3T3, MCF-7 and WIDR cells. Oestrogen receptor binding affinity (RBA) was shown by five of the nine compounds tested. 2-(4-hydroxy)-6-hydroxybenzo-thiazole was the most active of the benzothiazoles tested (RBA 0.7). This is low but comparable to that of genistein. EGFRTK inhibitory activity was shown by four of the six benzothiazole derivatives tested; activity was comparable to that of genistein. Cytotoxicity assays have shown no selective toxicity of 2-phenylbenzothiazoles to any of the cell lines tested. Toxicity to MCF-7 cells was similar to that for other cell lines despite some compounds showing oestrogen receptor binding capacity. Amino-substituted 2-phenylbenzothiazoles showed selective toxicity towards transformed ANN-1 cells compared to normal 3T3 cells but the mechanism of this selectivity has not been established. Molecular modelling techniques, including CHEM-X, QUANTA and MOPAC were used to compare known ATP-competitive tyrosine kinase inhibitors with a model of ATP built from the crystal structure of the ATP-phosphoglycerate kinase complex. Structural features thought to be important to kinase inhibition were found and used to suggest further 2-phenylbenzothiazole analogues which may have improved activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extracellular signal-regulated kinase (ERK) pathway participates in the control of numerous cellular processes, including cell proliferation. Since its activation kinetics are critical for to its biological effects, they are tightly regulated. We report that the protein translation factor, eukaryotic translation initiation factor 3, subunit a (eIF3a), binds to SHC and Raf-1, two components of the ERK pathway. The interaction of eIF3a with Raf-1 is increased by ß-arrestin2 expression and transiently decreased by epidermal growth factor (EGF) stimulation in a concentration-dependent manner. The EGF-induced decrease in Raf-1-eIF3a association kinetically correlates with the time course of ERK activation. eIF3a interferes with Raf-1 activation and eIF3a downregulation by small interfering RNA enhances ERK activation, early gene expression, DNA synthesis, expression of neuronal differentiation markers in PC12 cells, and Ras-induced focus formation in NIH 3T3 cells. Thus, eIF3a is a negative modulator of ERK pathway activation and its biological effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visfatin is an adipogenic adipokine with increased levels in obesity, properties common to leptin. Thus, leptin may modulate visfatin production in adipose tissue (AT). Therefore, we investigated the effects of leptin on visfatin levels in 3T3-L1 adipocytes and human/murine AT, with or without a leptin antagonist. The potential signaling pathways and mechanisms regulating visfatin production in AT was also studied. Real-time RT-PCR and Western blotting were used to assess the relative mRNA and protein expression of visfatin. ELISA was performed to measure visfatin levels in conditioned media of AT explants, and small interfering RNA technology was used to reduce leptin receptor expression. Leptin significantly (P<0.01) increased visfatin levels in human and murine AT with a maximal response at leptin 10(-9) M, returning to baseline at leptin 10(-7) M. Importantly, ip leptin administration to C57BL/6 ob/ob mice further supported leptin-induced visfatin protein production in omental AT (P<0.05). Additionally, soluble leptin receptor levels rose with concentration dependency to a maximal response at leptin 10(-7) M (P<0.01). The use of a leptin antagonist negated the induction of visfatin and soluble leptin receptor by leptin. Furthermore, leptin-induced visfatin production was significantly decreased in the presence of MAPK and phosphatidylinositol 3-kinase inhibitors. Also, when the leptin eceptor gene was knocked down using small interfering RNA, eptin-induced visfatin expression was significantly decreased. Thus, leptin increases visfatin production in AT in vivo and ex vivo via pathways involving MAPK and phosphatidylinositol 3-kinase signaling. The pleiotropic effects of leptin may be partially mediated by visfatin.