897 resultados para 1D and 2D NMR
Resumo:
Polyphosphate esters containing ferrocene structures were synthesized from 1,1′-bis (p-hydroxyphenylamido) ferrocene and 1,1′-bis (p-hydroxyphenoxycarbonyl) ferrocene with aryl phosphorodichloridates by interfacial polycondensation using a phase transfer catalyst. The polymers were characterized by infrared, 1H-, 13C-, and 31-NMR spectroscopy. The molecular weights were determined by end group analysis using 31P-NMR spectral data. The thermal stability and fire retardancy were respectively determined by thermogravimetry and limiting oxygen index (LOI) measurements. The polyamide-phosphate esters showed better thermal stability and higher LOI values than the polyester-phosphate esters.
Resumo:
The stereochemistry of the Diels-Alder cycloaddition of several dienes to the facially perturbed dienophiles 2,3-norbornenobenzoquinone (3) and 2,3-norbornanobenzoquinone (4) has been examined. Unambiguous structural proof for the adducts formed has been obtained from complementary 'H and I3C NMR spectral data and in two cases through X-ray crystal structure determination. While 1,3-~yclopentadiene1, ,3-~yclohexadienea, nd cyclooctatetraene exhibit preference for addition to 3 from the bottom side, the stereochemical outcome is reversed in their response to 4.1,3-DiphenyIisobenzofuran and 1,2,3,4-tetrachloro-5,5-dimethoxycyclopentadieenneg aged 3 from the top side with marked selectivity, which is further enhanced in their reaction with 4. The observed stereoselectivities seem to be essentially controlled by steric interactons at the transition state. Model calculations provide support for this interpretation.
Resumo:
The reactions of [MCl2(cod)](M = Pd or Pt, cod = cycloocta-1,5-diene) with RN[P(OPh)2]2[R = Me (L1) or Ph (L2)] afford the chelate complexes [MCl2L1] and [MCl2L2]. The dinuclear palladium(O) complex, [Pd2L13] has been synthesized by starting from [Pd2(dba)3](dba = dibenzylideneacetone). Redox condensation of [Pd2(dba)3] and [PdCl2(PhCN)2] in the presence of the diphosphazane ligands gives the dinuclear palladium(I) complexes [Pd2Cl2L12] and [Pd2Cl2L22]. The structures of the complexes have been deduced from 1H and 31P NMR spectroscopic data. Single-crystal X-ray diffraction studies confirm the structures of [Pd2L13] and [Pd2Cl2L22].
Resumo:
The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Copper(l) complexes of 1,2-bis(diphenylphosphino)ethane (dppe) with a stoichiometry Cu-2(dppe)(3)(X)(2) [X- = CN- (1), SCN- (2), NO3- (3)] are obtained from direct reactions of CuX and dppe. The complexes are structurally and spectroscopically (NMR and IR) characterized. The structure of the [Cu-2(dPPe)(3)](2+) dication is similar to the structural motif observed in many other complexes with a chelating dppe and a bridging dppe connecting two copper centers. In complexes 1 -3, the anions are confined to the cavity formed by the phosphines which force a monodentate coordination mode despite the predominant bidentate/bridging character of the anions. The coordination angles rather than the thermochemical radii dictate the steric requirement of anions. While the solution behavior of 3, with nitrate, is similar to complexes studied earlier, complexes with pseudohalides exhibit new solution behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The bis(amino)hexachlorocyclotetraphosphazenes, 2-trans-6-N4P4 (NHR)2Cl6, R [dbnd] Me, Pr n Pr i , Bu n , CH2Ph, Ph, are obtained from the reaction of N4P4Cl8 with four mol. equivalents of the appropriate amine. Isomers with 2,4-structures have been isolated for R [dbnd] Bu n , CH2Ph. The 1H and 31P NMR spectra of these bis(amino) compounds and of their dimethylamino derivatives, 2-trans-6-N4P4 (NMe2)6 (NHR)2 are discussed.
Resumo:
Effect of interaction of tetracyanoethylene (TCNE) and tetrathia fulvalene (TTF) with boron- and nitrogen-doped graphene has been investigated by Raman spectroscopy. The G- and 2D bands of boron- and nitrogen-doped graphenes in the Raman spectra show significantly different changes on interaction with electron-donor and -acceptor molecules. Thus, tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) have different effects on the Raman spectra of boron- and nitrogen-doped graphenes. The changes in the Raman spectra brought about by electron-donor and -acceptor molecules can be understood in general terms on the basis of molecular charge transfer. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report a special, hitherto-unexplored property of (-)-epigallocatechin gallate (EGCG) as a chiral solvating agent for enantiodiscrimination of alpha-amino acids in the polar solvent DMSO. This phenomenon has been investigated by H-1 NMR spectroscopy. The mechanism of the interaction property of EGCG with alpha-amino acids has been understood as arising out of hydrogen-bonded noncovalent interactions, where the -OH groups of two phenyl rings of EGCG play dominant roles. The conversion of the enantiomeric mixture into diastereomers yielded well-resolved peaks for D and L amino acids permitting the precise measurement of enantiomeric composition. Often one encounters complex situations when the spectra are severely overlapped or partially resolved hampering the testing of enantiopurity and the precise measurement of enantiomeric excess (ee). Though higher concentration of EGCG yielded better discrimination, the use of lower concentration being economical, we have exploited an appropriate 2D NMR experiment in overcoming such problems. Thus, in the present study we have successfully demonstrated the utility of the bioflavonoid (-)-EGCG, a natural product as a chiral solvating agent for the discrimination of large number of alpha-amino acids in a polar solvent DMSO. Another significant advantage of this new chiral sensing agent is that it is a natural product and does not require tedious multistep synthesis unlike many other chiral auxiliaries.
Resumo:
A systematic understanding of the noncovalent interactions that influence the structures of the cis conformers and the equilibrium between the cis and the trans conformers, of the X-Pro tertiary amide motifs, is presented based on analyses of H-1-, C-13-NMR and FTIR absorption spectra of two sets of homologous peptides, X-Pro-Aib-OMe and X-Pro-NH-Me (where X is acetyl, propionyl, isobutyryl and pivaloyl), in solvents of varying polarities. First, this work shows that the cis conformers of any X-Pro tertiary amide motif, including Piv-Pro, are accessible in the new motifs X-Pro-Aib-OMe, in solution. These conformers are uniquely observable by FTIR spectroscopy at ambient temperatures and by NMR spectroscopy from temperatures as high as 273 K. This is made possible by the persistent presence of n(i-1i)* interactions at Aib, which also influence the disappearance of steric effects at these cis X-Pro rotamers. Second, contrary to conventional understanding, the energy contribution of steric effects to the cis/trans equilibrium at the X-Pro motifs is found to be nonvariant (0.54 +/- 0.02 kcal/mol) with increase in steric bulk on the X group. Third, the current studies provide direct evidence for the weak intramolecular interactions namely the n(i-1i)*, the N-Pro center dot center dot center dot Hi+1 (C(5)a), and the C-7 hydrogen bond that operate and influence the structures, stabilities, and dynamics between different conformational states of X-Pro tertiary amide motifs. NMR and IR spectral data suggest that the cis conformers of X-Pro motifs are ensembles of short-lived rotamers about the C-X-N-Pro bond. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 66-77, 2014.
Resumo:
NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.
Resumo:
Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface alpha 5 beta 1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 x 10(8)) and Tomlinson J (Library size 1.37 x 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.
Resumo:
The rare occurrence of intramolecular hydrogen bonds (HBs) of the type N-H center dot center dot center dot F-C is detected in the derivatives of imides in a low polarity solvent by using multi-dimensional and multinuclear NMR experiments. The observation of (1h)J(FH), (2h)J(FN), and (2h)J(FF), where the spin magnetization is transmitted through space among the interacting NMR active nuclei, provided strong and unambiguous evidence for the existence of intra-molecular HBs. The variation in the chemical shifts of labile protons depending on physical conditions, such as the solvent dilution and the systematic alteration of temperature confirmed the presence of weak interactions through intramolecular HBs in all the investigated fluorine substituted molecules. The self or cross dimerization of molecules is unequivocally discarded by the analysis of the rates of diffusion obtained using pseudo-two dimensional DOSY experiments. The Density Function Theory (DFT) calculations based on the Quantum Theory of Atoms In Molecules (QTAIM) and Non Covalent Interaction (NCI), are in close agreement with the NMR experimental findings.
Resumo:
Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.
Resumo:
We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave guiding chains to control the acoustic wave transmission. The rapid wave front amplitude decay exhibited by these granular networks makes them highly attractive for impact mitigation applications. The agreement between experiments, numerical simulations, and applicable theoretical predictions validates the wave guiding capabilities of these engineered granular crystals and networks and opens a wide range of possibilities for the realization of increasingly complex granular material design.
Resumo:
232 p.