544 resultados para 1125
Resumo:
In einer Fülle sedimentpetrographischer Arbeiten wird versucht, aus der Korngrößenverteilung und der Mineralzusammensetzung von Sanden Schlüsse auf ihre Herkunft, ihre Transportrichtung oder ihr Ablagerungsmilieu abzuleiten, die für die Lösung geologischer und ebenso auch wasserbaulicher Probleme nötig sind. Diese Literatur steckt noch voller Widersprüche und Fehlschlüsse. In der vorliegenden Arbeit wird daher versucht, den Mechanismus des Sandtransports vom Grundsätzlichen her besser verständlich zu machen. Das geschieht anhand zweier ausgewählter und eingehend untersuchter Beispiele aus dem Küstenbereich der westlichen Ostsee unter Einbeziehung der Erfahrungen an vielen Vergleichsproben aus verschiedensten Sedimentationsräumen. Unentbehrlich für das Verständnis der transportbedingten Veränderungen an den Sanden ist das sog. 'Äquivalenzprinzip' (Abschnitt 2). Es stellt fest, daß es in einem von einer Strömung transportierten Sediment immer Körner zwar verschiedener Korngröße, aber auch entsprechend verschiedener Dichte und/oder Kornform gibt, die miteinander transportiert und abgelagert werden, weil unter den herrschenden hydraulischen Bedingungen diese Eigenschaften einander voll kompensieren. In Abschnitt 3 wird kurz die von Rittenhouse angegebene Methode geschildert, mit der man an natürlichen Sedimenten unter der sehr allgemein gehaltenen 'Äquivalenzbedingung' gleicher Transportierbarkeit bestimmen kann, welches Korngrößenverhältnis ein bestimmtes Verhältnis der Dichten kompensieren kann. Die von Rittenhouse am Beispiel von Flußsanden gefundene Funktion zwischen der Dichte der Körner und ihrem Äquivalenzverhältnis gegen Quarzkörner wird hier als erste Näherung auch für die Transportverhältnisse von Strandsanden zugrunde gelegt. In Abschnitt 6 wird gezeigt, daß das auch gerechtfertigt ist. In Abschnitt 4 wird eine allgemein brauchbare Methode abgeleitet, mit der man nicht nur unter stark vereinfachenden Annahmen, sondern auch an Sanden mit realen, stets komplexen Korn-größenverteilungen die Folgen des Äquivalenzprinzips für die Verteilung von Mineralen verschiedener Dichte berechnen kann. Für jede Serie von Sanden, deren Korngrößenverteilungen entlang des Transportweges eine bestimmte, von den Transportbedingungen abhängige Entwicklung durchmachen, ergibt sich damit eine Kurvenschar, die beschreibt, wie sich die Mengen von Mineralien mit verschiedenen Dichten in den einzelnen Korngrößenklassen dabei ändern müßten, vorausgesetzt, daß sie im gesamten Korngrößenbereich gleich verfügbar wären. Diese Kurvenschar ist die 'Charakteristik' des betreffenden Transportfalles. Durch den Vergleich zwischen den nach der Charakteristik in den einzelnen Klassen zu erwartenden Mineralmengen mit den in dem betrachteten Transportfall tatsächlich gefundenen läßt sich deren relative, d. h. auf die Menge des Quarzes bezogene 'Verfügbarkeit' berechnen. Sie wird durch die sog. 'hydraulischen Verhältnisse' (Rittenhouse) ausgedrückt, die im Gegensatz zu den 'Klassenverhältnissen' von der Korngrößensonderung beim Transport unabhängig und nur von der Zusammensetzung des Ausgangsmaterials bestimmt sind, solange beim Transport allein das Äquivalenzprinzip wirksam ist. In den untersuchten Fällen von Sandtransport an zwei Strandabschnitten der westlichen Ostsee (Abschnitt 5) zeigte dieser Vergleich (Abschnitt 6), daß die beobachtete Verteilung von Schwermineralen nicht allein durch Transportsonderung unter Gültigkeit des Äquivalenzprinzips erklärt werden kann, sondern daß dabei offenbar auch mechanische Zerkleinerung der Körner während des Transports mitgewirkt haben muß. Nur ein solcher, von der Transportsonderung unabhängiger Effekt kann als Transportrichtungs-Kriterium benutzt werden, wenn die Entwicklung der Korngrößenverteilungen allein keine Entscheidung erlaubt. Wie die Beispiele zeigen, läßt sich Klarheit über die bisher noch sehr umstrittene Frage nach dem Ausmaß der transportbedingten mechanischen Zerkleinerung von Sandkörnern nur gewannen, wenn in Zukunft versucht wird, bei der Bearbeitung natürlicher Beispiele den Einfluß der stets vorhandenen Transportsonderung auf Veränderungen des Mineralbestandes unter Anwendung des Äquivalenzprinzips rechnerisch auszuschalten. Über dieses wesentlichste Ergebnis hinaus erlauben die dargestellten Zusammenhänge auch eine kritische Stellungnahme zu den oben erwähnten allgemeinen Problemen und führen zu methodischen und sachlichen Verbesserungsvorschlägen für weitere Untersuchungen an klastischen Sedimenten.
Resumo:
Mesopelagic fish were collected using a 1 m**2 Double-MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) and 4.5 m**2 IKMT (Isaacs-Kidd midwater trawl). The main portion of the IKMT was 20 mm knotted nylon, and the tail bag was 3 mm knotless nylon. Oblique IKMT tows were made to a maximum depth of 500 m at a tow speed of 3.5 knots. The original cruise plan intended for nighttime IKMT tows, but tow times varied due to operational constraints. The MOCNESS was equipped with 20 nets of 333 µm mesh size; 10 nets per side. The towing speed was 2 knots. Samples were collected to a maximum depth of 1250 m. The first oblique nets sampled from the surface to the max depth, and the other nets sampled depth stratified bins of the water column. MOCNESS hauls were performed during day and night to investigate diel vertical migrations. Mesoplelagic fish were processed on board. All fish were picked from all IKMT nets, most oblique MOCNESS nets, and the left side nets of the depth stratified MOCNESS samples. The Depth stratified nets from the right side of the MOCNESS frame were preserved in 5 % formalin for future quantitative analyses of the nekton. Fish were identified to the lowest possible taxa using Whitehead et al. (1984) and Fahay (2007). Standard length of each fish was measured to the nearest 0.1 mm using a digital caliper. Measured and identified fish were frozen in an -80 °C freezer, and shipped to the University of Hamburg at the end of the cruise.
Resumo:
The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.