985 resultados para 1099


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we introduce a new testing procedure for evaluating the rationality of fixed-event forecasts based on a pseudo-maximum likelihood estimator. The procedure is designed to be robust to departures in the normality assumption. A model is introduced to show that such departures are likely when forecasters experience a credibility loss when they make large changes to their forecasts. The test is illustrated using monthly fixed-event forecasts produced by four UK institutions. Use of the robust test leads to the conclusion that certain forecasts are rational while use of the Gaussian-based test implies that certain forecasts are irrational. The difference in the results is due to the nature of the underlying data. Copyright © 2001 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of methods of evaluating the validity of interval forecasts of financial data are analysed, and illustrated using intraday FTSE100 index futures returns. Some existing interval forecast evaluation techniques, such as the Markov chain approach of Christoffersen (1998), are shown to be inappropriate in the presence of periodic heteroscedasticity. Instead, we consider a regression-based test, and a modified version of Christoffersen's Markov chain test for independence, and analyse their properties when the financial time series exhibit periodic volatility. These approaches lead to different conclusions when interval forecasts of FTSE100 index futures returns generated by various GARCH(1,1) and periodic GARCH(1,1) models are evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare linear autoregressive (AR) models and self-exciting threshold autoregressive (SETAR) models in terms of their point forecast performance, and their ability to characterize the uncertainty surrounding those forecasts, i.e. interval or density forecasts. A two-regime SETAR process is used as the data-generating process in an extensive set of Monte Carlo simulations, and we consider the discriminatory power of recently developed methods of forecast evaluation for different degrees of non-linearity. We find that the interval and density evaluation methods are unlikely to show the linear model to be deficient on samples of the size typical for macroeconomic data

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the predictive power of leading indicators for output growth at horizons up to 1 year. We use the MIDAS regression approach as this allows us to combine multiple individual leading indicators in a parsimonious way and to directly exploit the information content of the monthly series to predict quarterly output growth. When we use real-time vintage data, the indicators are found to have significant predictive ability, and this is further enhanced by the use of monthly data on the quarter at the time the forecast is made

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent literature has suggested that macroeconomic forecasters may have asymmetric loss functions, and that there may be heterogeneity across forecasters in the degree to which they weigh under- and over-predictions. Using an individual-level analysis that exploits the Survey of Professional Forecasters respondents’ histogram forecasts, we find little evidence of asymmetric loss for the inflation forecasters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out-of-sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross-bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non-linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high-frequency exchange rate returns, and their out-of-sample forecasting performance is compared to that of other time series models

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores a number of statistical models for predicting the daily stock return volatility of an aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests highlights evidence of bidirectional causality, although the relationship is stronger from volatility to volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also augmented by the addition of a measure of lagged volume to form more general ex-ante forecasting models. The results indicate that augmenting models of volatility with measures of lagged volume leads only to very modest improvements, if any, in forecasting performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of the UK population is either overweight or obese. Health economists, nutritionists and doctors are calling for the UK to follow the example of other European countries and introduce a tax on soft drinks as a result of the perception that high intakes contribute to diet-related disease. We use a demand model estimated with household-level data on beverage purchases in the UK to investigate the effects of a tax on soft drink consumption. The model is a Quadratic Almost Ideal Demand System, and censoring is handled by applying a double hurdle. Separate models are estimated for low, moderate and high consumers to allow for a differential impact on consumption between these groups. Applying different hypothetical tax rates, we conclude that understanding the nature of substitute/complement relationships is crucial in designing an effective policy as these relationships differ between consumers depending on their consumption level. The overall impact of a soft drink tax on calorie consumption is likely to be small.