525 resultados para 1076
Resumo:
The stable carbon isotopic composition of the planktonic foraminifera Globigerinoides sacculifer and G. ruber (white) and sedimentary organic matter from the northern Gulf of Aqaba have been investigated to estimate changes in delta13CDIC in surface waters during the last 1,000 years. The high sedimentation rates at the core sites (about 54 cm/Kyear) provide high temporal resolution (~10 years). Recent sediments at the top of the cores reflect conditions younger than 1950. The delta13C records of the planktonic foraminifera from three multicores display similar trends, showing a uniform and consistent pattern before the 1750s, and a gradual decrease of approximately 0.63? over the last two centuries. This decrease seems to track the decrease of delta13CDIC in surface waters, which is mainly caused by the increase of anthropogenic input of 13C-depleted CO2 into the atmosphere. Similarly, a trend towards lighter values of the carbon isotopic composition of sedimentary organic matter (delta13Corg) during the last 200 years supports the interpretation obtained from the planktonic foraminiferal delta13C. Furthermore, direct measurements of seawater show that delta13C of the dissolved inorganic carbon (DIC) in the northern Gulf of Aqaba has decreased by about 0.44 per mil during the period 1979-2000. The average annual decrease is 0.021 per mil, which is similar to that observed globally. The delta13C values of planktonic foraminifera combined with organic matter delta13C from marine sediments are good indicators for reconstructing past changes in atmospheric CO2 concentrations from the northern Gulf of Aqaba.
Resumo:
The argillite sequence located at the base of the sedimentary cover on the continental slope of the Sea of Japan was studied by petrographic, palynological, and X-ray diffraction methods. Two spores-pollen complexes were distinguished in it: the Late Oligocene reflecting cooling and the Early Miocene corresponding to initiated warming. Data obtained indicate that the sequence is composed of terrigenous silty-clayey sediments that accumulated in shallow coastal-marine settings. The global sea-level rise at the Early-Middle Miocene transition, combined with regional tectonic processes, determined basin's deepening, owing to which the argillite sequence was overlain by a thick layer of Middle Miocene diatomaceous-clayey sediments. Due to tectonic movement along existing faults in the terminal Late Miocene, the argillite sequence occurring initially at depths of at least 400-500 m was locally exhumed to the basin bottom.
Resumo:
Introduction: Chemical composition of water determines its physical properties and character of processes proceeding in it: freezing temperature, volume of evaporation, density, color, transparency, filtration capacity, etc. Presence of chemical elements in water solution confers waters special physical properties exerting significant influence on their circulation, creates necessary conditions for development and inhabitance of flora and fauna, and imparts to the ocean waters some chemical features that radically differ them from the land waters (Alekin & Liakhin, 1984). Hydrochemical information helps to determine elements of water circulation, convection depth, makes it easier to distinguish water masses and gives additional knowledge of climatic variability of ocean conditions. Hydrochemical information is a necessary part of biological research. Water chemical composition can be the governing characteristics determining possibility and limits of use of marine objects, both stationary and moving in sea water. Subject of investigation of hydrochemistry is study of dynamics of chemical composition, i.e. processes of its formation and hydrochemical conditions of water bodies (Alekin & Liakhin 1984). The hydrochemical processes in the Arctic Ocean are the least known. Some information on these processes can be obtained in odd publications. A generalizing study of hydrochemical conditions in the Arctic Ocean based on expeditions conducted in the years 1948-1975 has been carried out by Rusanov et al. (1979). The "Atlas of the World Ocean: the Arctic Ocean" contains a special section "Hydrochemistry" (Gorshkov, 1980). Typical vertical profiles, transects and maps for different depths - 0, 100, 300, 500, 1000, 2000, 3000 m are given in this section for the following parameters: dissolved oxygen, phosphate, silicate, pH and alkaline-chlorine coefficient. The maps were constructed using the data of expeditions conducted in the years 1948-1975. The illustrations reflect main features of distribution of the hydrochemical elements for multi-year period and represent a static image of hydrochemical conditions. Distribution of the hydrochemical elements on the ocean surface is given for two seasons - winter and summer, for the other depths are given mean annual fields. Aim of the present Atlas is description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical information for the years 1948-2000 and using the up-to-date methods of analysis and electronic forms of presentation of hydrochemical information. The most wide-spread characteristics determined in water samples were used as hydrochemical indices. They are: dissolved oxygen, phosphate, silicate, pH, total alkalinity, nitrite and nitrate. An important characteristics of water salt composition - "salinity" has been considered in the Oceanographic Atlas of the Arctic Ocean (1997, 1998). Presentation of the hydrochemical characteristics in this Hydrochemical Atlas is wider if compared with that of the former Atlas (Gorshkov, 1980). Maps of climatic distribution of the hydrochemical elements were constructed for all the standard depths, and seasonal variability of the hydrochemical parameters is given not only for the surface, but also for the underlying standard depths up to 400 m and including. Statistical characteristics of the hydrochemical elements are given for the first time. Detailed accuracy estimates of initial data and map construction are also given in the Atlas. Calculated values of mean-root deviations, maximum and minimum values of the parameters demonstrate limits of their variability for the analyzed period of observations. Therefore, not only investigations of chemical statics are summarized in the Atlas, but also some elements of chemical dynamics are demonstrated. Digital arrays of the hydrochemical elements obtained in nodes of a regular grid are the new form of characteristics presentation in the Atlas. It should be mentioned that the same grid and the same boxes were used in the Atlas, as those that had been used by creation of the US-Russian climatic Oceanographic Atlas. It allows to combine hydrochemical and oceanographic information of these Atlases. The first block of the digital arrays contains climatic characteristics calculated using direct observational data. These climatic characteristics were not calculated in the regions without observations, and the information arrays for these regions have gaps. The other block of climatic information in a gridded form was obtained with the help of objective analysis of observational data. Procedure of the objective analysis allowed us to obtain climatic estimates of the hydrochemical characteristics for the whole water area of the Arctic Ocean including the regions not covered by observations. Data of the objective analysis can be widely used, in particular, in hydrobiological investigations and in modeling of hydrochemical conditions of the Arctic Ocean. Array of initial measurements is a separate block. It includes all the available materials of hydrochemical observations in the form, as they were presented in different sources. While keeping in mind that this array contains some amount of perverted information, the authors of the Atlas assumed it necessary to store this information in its primary form. Methods of data quality control can be developed in future in the process of hydrochemical information accumulation. It can be supposed that attitude can vary in future to the data that were rejected according to the procedure accepted in the Atlas. The hydrochemical Atlas of the Arctic Ocean is the first specialized and electronic generalization of hydrochemical observations in the Arctic Ocean and finishes the program of joint efforts of Russian and US specialists in preparation of a number of atlases for the Arctic. The published Oceanographic Atlas (1997, 1998), Atlas of Arctic Meteorology and Climate (2000), Ice Atlas of the Arctic Ocean prepared for publication and Hydrochemical Atlas of the Arctic Ocean represent a united series of fundamental generalizations of empirical knowledge of Arctic Ocean nature at climatic level. The Hydrochemical Atlas of the Arctic Ocean was elaborated in the result of joint efforts of the SRC of the RF AARI and IARC. Dr. Ye. Nikiforov was scientific supervisor of the Atlas, Dr. R. Colony was manager on behalf of the USA and Dr. L. Timokhov - on behalf of Russia.
Resumo:
Today's digital libraries (DLs) archive vast amounts of information in the form of text, videos, images, data measurements, etc. User access to DL content can rely on similarity between metadata elements, or similarity between the data itself (content-based similarity). We consider the problem of exploratory search in large DLs of time-oriented data. We propose a novel approach for overview-first exploration of data collections based on user-selected metadata properties. In a 2D layout representing entities of the selected property are laid out based on their similarity with respect to the underlying data content. The display is enhanced by compact summarizations of underlying data elements, and forms the basis for exploratory navigation of users in the data space. The approach is proposed as an interface for visual exploration, leading the user to discover interesting relationships between data items relying on content-based similarity between data items and their respective metadata labels. We apply the method on real data sets from the earth observation community, showing its applicability and usefulness.