871 resultados para 020502 Lasers and Quantum Electronics
Resumo:
Spectral and energetic characteristics of the cooperative recombination of high density electrons and holes in bulk GaAs are experimentally studied at room temperature. It is shown that the properties and parameters of femtosecond superradiant pulses are conditioned by the collective properties of electrons and holes. Electron-hole pairing and the formation of a short-living coherent e-h BCS state distinguish strongly the regime of cooperative emission from all radiative e-h recombination regimes, which have been observed earlier. The dependences of the energy gap (the order parameter), the Fermi energy, and the band gap of the coherent e-h BCS state on the concentration of electron-hole pairs are obtained.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. ©2009 Optical Society of America.
Resumo:
Optically pumped ultrafast vertical external cavity surface emitting lasers (VECSELs), also referred to as semiconductor disk lasers (SDLs), are very attractive sources for ps- and fs-pulses in the near infrared [1]. So far VECSELs have been passively modelocked with semiconductor saturable absorber mirrors (SESAMs, [2]). Graphene has emerged as a promising saturable absorber (SA) for a variety of applications [3-5], since it offers an almost unlimited bandwidth and a fast recovery time [3-5]. A number of different laser types and gain materials have been modelocked with graphene SAs [3-4], including fiber [5] and solid-state bulk lasers [6-7]. Ultrafast VECSELs are based on a high-Q cavity, which requires very low-loss SAs compared to other lasers (e.g., fiber lasers). Here we develop a single-layer graphene saturable absorber mirror (GSAM) and use it to passively modelock a VECSEL. © 2013 IEEE.
Resumo:
Single-wall carbon nanotubes (SWNTs) and graphene have emerged as promising saturable absorbers (SAs), due to their broad operation bandwidth and fast recovery times [1-3]. However, Yb-doped fiber lasers mode-locked using CNT and graphene SAs have generated relatively long pulses. All-fiber cavity designs are highly favored for their environmental robustness. Here, we demonstrate an all-fiber Yb-doped laser based on a SWNT saturable absorber, which allows generation of 8.7 ps-long pulses, externally compressed to 118 fs. To the best of our knowledge, these are the shortest pulses obtained with SWNT SAs from a Yb-doped fiber laser. © 2013 IEEE.
Resumo:
The impulsive optical excitation of carriers in graphene creates an out-of-equilibrium distribution, which thermalizes on an ultrafast timescale [1-4]. This hot Fermi-Dirac (FD) distribution subsequently cools via phonon emission within few hundreds of femtoseconds. While the relaxation mechanisms mediated by phonons have been extensively investigated, the initial stages, ruled by fundamental electron-electron (e-e) interactions still pose a challenge. © 2013 IEEE.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
This paper presents the lineshape analysis of the beat signal between the optical carrier and the shifted and delayed side-bands produced by sinusoidal amplitude modulation. It is shown that the beat signal has a typical lineshape with a very narrow delta-peak superposed on a quasi-Lorentzian profile. Theoretical explanation for the appearance of this peak has been given based on optical spectral structure constructed by a large number of optical wave trains. It is predicted that the delta-peak is originated from the beat between the wave trains in the carrier and those in the delayed sidebands when their average coherence length is longer than the delay line. Experiments carried out using different delay lines clearly show that the delta-peak is always located at the modulation frequency and decreases with the increasing delay line. Our analysis explicitly indicates that the linewidth is related to the observation time. It is also suggested that the disappearance of the delta-peak can be used as the criterion of coherence elimination.
Resumo:
Transmission properties of data amplitude modulation (AM) and frequency modulation (FM) in radio-over-fiber (RoF) system are studied numerically. The influences of fiber dispersion and nonlinearity on different microwave modulation schemes, including double side band (DSB), single side band (SSB) and optical carrier suppression (OCS), are investigated and compared. The power penalties at the base station (BS) and the eye opening penalties of the recovered data at the end users are both calculated and analyzed. Numerical simulation results reveal that the power penalty of FM can be drastically decreased due to the larger modulation depth it can achieve than that of AM. The local spectrum broadening around subcarrier microwave frequency of AM due to fiber nonlinearity can also be eliminated with FM. It is demonstrated for the first time that the eye openings of the FM recovered data can be controlled by its modulation depths and the coding formats. Negative voltage encoding format was used to further decrease the RF frequency thus increase the fluctuation period considering their inverse relationship.
Resumo:
The optical properties of GaAs/AlGaAs thin films with photonic crystals were investigated by measuring their photoluminescence spectra. The spectral intensities, lifetimes, and quantum efficiencies decreased greatly compared with those in blank material without photonic crystals. The quantum efficiencies in the material were also calculated from spectral intensities and lifetimes and the quantum efficiencies calculated from those two methods agreed with each other to some extent.
Resumo:
Variations in optical spectrum and modulation band-width of a modulated Fabry-Perot (FP) semiconductor laser subject to the external light injection from another FP Laser is investigated in this paper. Optimal wavelength matching conditions for two FP lasers are discussed. A series of experiments show that two FP lasers should have a central wavelength overlapping and a mode spacing difference of several gigahertz. Under these conditions both the magnitude and phase frequency responses can be improved significantly.
Resumo:
AlGaN-based resonant-cavity-enhanced (RCE) p-i-n photodetectors (PDs) for operating at the wavelength of 330 nm were designed and fabricated. A 20.5-pair AlN/Al0.3Ga0.7N distributed Bragg reflector (DBR) was used as the back mirror and a 3-pair AlN/Al0.3Ga0.7N DBR as the front one. In the cavity is a p-GaN/i-GaN/n-Al0.3Ga0.7N structure. The optical absorption of the RCE PD structure is at most 59.8% deduced from reflectance measurement. Selectively enhanced by the cavity effect, a response peak of 0.128 A/W at 330 nm with a half-peak breadth of 5.5 nm was obtained under zero bias. The peak wavelength shifted 15 nm with the incident angle of light increasing from 0 degrees to 60 degrees.
Resumo:
(In, Cr)As ferromagnetic semiconductor quantum dots (QDs) were grown by molecular beam epitaxy on GaAs (001) substrates. The growth temperature effects on structure and magnetism of the QDs were investigated systematically. The Cr(2+)3d(4) states and quantum confined effect are assumed to play an important role in the room-temperature ferromagnetism of (In, Cr)As QDs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The photoluminescence correlation from a single CdSe nanocrystal under pulsed excitation is studied, and a single photon is realized at wavelength 655 nm at room temperature. The single colloidal CdSe quantum dot is prepared on a SiO2/silicon surface by a drop-and-drag technique. The long-term stability of the single-photon source is investigated; it is found that the antibunching effect weakens with excitation time, and the reason for the weakening is attributed to photobleaching. The lifetimes of photoluminescence from a single quantum dot are analyzed at different excitation times. By analyzing the probability distribution of on and off times of photoluminescence, the Auger assisted tunneling and Auger assisted photobleaching models are applied to explain the antibunching phenomenon.
Resumo:
Mode characteristics are analyzed for electrically injected equilateral-triangle-resonator (ETR) semiconductor microlasers, which are laterally confined by insulating barrier SiO2 and electrode metals Ti-Au. For the ETR without metal layers, the totally confined mode field patterns are derived based on the reflection phase shifts, and the Q-factors are calculated from the far-field emission of the analytical near field distribution, which are agreement very well with the numerical results of the finite-difference time-domain (FDTD) simulation. The polarization dependence reflections for light rays incident on semiconductor-SiO2 -Ti-Au multi-layer structures are accounted in considering the confinement of TE and TM modes in the ETR with the metal layers. The reflectivity will greatly reduce with a Ti layer between SiO2 and Au for light rays with incident angle less than 30 especially for the TE mode, even the thickness of the Ti layer is only 10 nm. If the ETR is laterally confined by SiO2-Au layers without the Ti layer, the Fabry-Perot type modes with an incident angle of zero on one side of the ETR can also have high Q-factor. The FDTD simulation for the ETR confined by metal layers verifies the above analysis based on multi-layer reflections. The output spectra with mode intervals of whispering-gallery modes and Fabry-Perot type modes are observed from different ETR lasers with side length of 10 m, respectively.